Potential Ripasudil as Renewable Therapy to Overcome Uveitis Glaucoma through Inhibition of the Rho Kinase Pathway (ROCK)

Ilham Dhiya, Iskandar Purba G, Khartika Mahardini


Background: Uveitis is an inflammatory disease that accounts for 300 thousand new cases of blindness each year in America, and is responsible for 5-10% of vision changes worldwide. First-line therapy for uveitis is topical corticosteroids. Unfortunately, corticosteroid use is a risk factor for glaucoma. About 20-40% of patients experience an increase in pathological intra-ocular pressure that requires secondary glaucoma therapy. To reduce this pressure, the first therapy is beta-blockers and adrenergic agonists. But in inflammatory conditions, therapeutic side effects decrease. Over the years, a new glaucoma therapy agent, Ripasudil, has emerged. Research shows that Ripasudil can not only reduce intraocular pressure in glaucoma, but also has the anti-inflammatory effect needed to treat uveitis.

Methods: The study of the potential of Ripasudil using literature obtained from the database publications of the journal Pubmed, Clinical Trials and Science Direct. Supporting articles are sought based on specific keywords by the inclusion criteria of articles won in the UK, publications of the past 10 years (except basic science), EBM articles level 1-3 and support the discussion of literature review.

Results: Ripasudil can release inflammatory cell infiltration and exudation proteins in aqueous humor. In addition, MCPI-1 protein levels and IL-1, IL-6, TNF-dan, and MCP-1 mRNA levels in the iris-ciliary body decreased after Ripasudil administration. Clinical trials also show that Ripasudil can be used as a glaucoma therapy agent. Conclusion: Ripasudil can be an updated therapy to treat glaucoma uveitis through inhibition of the ROCK pathway and treatment of proinflammatory mediators.


Keywords              : Uveitic Glaucoma, ROCK Inhibitor, Ripasudil, Inflammation. 

Full Text:




Gonzalez MM, Solano MM, Porco TC, Oldenburg CE, Acharya NR, Lin Sc, et al. Epidemiology of uveitis in a US population-based study. J Opht Inflam Infection. 2018; 8(6): 1-8

Acharya NR, Tham VM, Esterberg E, Borkar DS, Parker JV, Vinoya AC, et al. Incidence and prevalence ofuveitis: results from the Pacific Ocular Inflammation Study. JAMA Ophthalmol. 2013; 131: 1405–12

Miserocchi E, Fogliato G, Modorati G, Bandello F. Review on the worldwide epidemiology of uveitis.Eur J Ophthalmol. 2013; 23: 705–17.

Tsirouki T, Dastiridou A, Symeonidis C, Tounakaki O, Brazitikou I, Kalogeropoulus C, et al. A Focus on the Epidemiology of Uveitis. Ocul Immunol Inflamm. 2018; 26(1): 2–16.

Suttorp-Schulten MS, Rothova A. The possible impact of uveitis in blindness: a literature survey. Br J Ophthalmol. 1996: 80;844–8

Chang JH, Wakefield D. Uveitis: a global perspective. Ocul Immunol Inflamm. 2002; 10: 263–79.

Vadot E. Epidemiology of intermediate uveitis: a prospective study in Savoy. Dev Ophtalmol. 1992; 23: 33-4.

Shirahama S, Kaburaki T, Nakahara H, Tanaka R, Takamoto M, Fujino Y, et al. Epidemiology of uveitis (2013–2015) and changes in the patterns of uveitis (2004– 2015) in the central Tokyo area: a retrospective study. BMC Ophthalmology. 2018; 18(189): 1-8.

Yeo TK, Ho SL, Lim WK, Teoh SC. Causes of visual loss associated with uveitis in a Singapore tertiary eye center. Ocul. Immunol. Inflamm.2013; 21 (4): 264–9.

Merayo-Lloves J, Power WJ, Rodriguez A, Pedroza-Seres M, Foster CS. Secondary glaucoma in patients with uveitis. Ophthalmologica. 1999; 213(5): 300–4.

Takahashi T, Ohtani S, Miyata K, Miyata N, Shirato S, Mochizuki M. A clinical evaluation of uveitis-associated secondary glaucoma. Jpn J Ophthalmol. 2002; 46(5): 556–62.

Herbert HM, Viswanathan A, Jackson H, Lightman SL. Risk factors for elevated intraocular pressure in uveitis. J Glaucoma. 2004; 13(2): 96–9.

Iwao K, Inatani M, Tanihara H. Success rates of trabeculotomy for steroid-induced glaucoma: a comparative, multicenter, retrospective cohort study. Am J Ophthalmol. 2011; 151(6): 1047–56.

Toris CB, Pederson JE. Aqueous humor dynamics in experimental iridocyclitis. Invest. Ophthalmol Vis Sci. 1987; 28(3): 477–81.

Moorthy RS, Mermoud A, Baerveldt G, Minckler DS, Lee PP, Rao NA. Glaucoma associated with uveitis. Surv Ophthalmol. 1997; 41(5): 361–94.

Sng CC, Ang M, Barton K. Uveitis and glaucoma: new insights in the pathogenesis and treatment. Prog Brain Res. 2015; 221: 243-69.

Sung VC, Barton K. Management of inflammatory glaucomas. Curr Opin Ophtalmol. 2004; 15(2): 136-40.

Uchiyama E, Papaliodis EN, Lobo A, Sobrin L. Side-effects of Anti-Inflammatory Therapy in Uveitis. Semin Ophtalmol. 2014; 29(5-6): 456-67.

Inoue T, Tanihara H. Ripasudil hydrochloride hydrate: targeting Rho kinase in the treatment of glaucoma. Expert Opin Pharmacoter. 2017; 18(15): 1669-73.

Uchida T, Honjo M, Yamagishi R, Aihara M. The Anti-Inflammatory Effect of Ripasudil (K-115), a Rho Kinase (ROCK) Inhibitor, on Endotoxin-Induced Uveitis in Rats. Invest Ophthalmol Vis Sci. 2017; 58: 5584–93.

Munoz-Negrete FJ, Moreno-Montanes J, Hernandez-Martinez P, Rebolleda G. Current Approach in the Diagnosis and Management of Uveitic Glaucoma. Biomed Res Int. 2015; 2015: 742792.

Siddique SS, Suelves AM, Baheti U, Foster CS. Glaucoma and uveitis. Surv Ophtalmol. 2013; 58(1): 1-10

Tanna AP, Johnson M. Rho kinase inhibitors as a novel treatment for glaucoma and ocular hypertension. Ophthalmology. 2018; 125(11): 1741–56.

Isobe T, Kasai T, Kawai H. Ocular penetration and pharmacokinetics of Ripasudil. J Ocul Pharmacol Ther. 2016;32(7):405–14.

Kusuhara S, Katsuyama A, Watsumiya W, Nakamura M. Efficacy and safety of Ripasudil, a Rho-associated kinase inhibitor, in eyes with uveitic glaucoma. Graefe’s Arch Clin Exp Ophthalmol. 2018; 256(4): 809-14.

Wada Y, Higashide T. Effects of Ripasudil, a rho kinase inhibitor, on blood flow in the optic nerve head of normal rats. Graefe’s Arch Clin Exp Ophthalmol. 2019;257:303–11.

Yasuda M, Takayama K, Kanda T, Taguchi M, Someya H. Comparison of intraocular pressure-lowering effects of Ripasudil hydrochloride hydrate for inflammatory and corticosteroid-induced ocular hypertension. PLoS One. 2017; 12(10): e0185305.

Meyer-schwesinger C, Dehde S, Ruffer C Von, Gatzemeier S, Klug P, Wenzel UO, et al. Rho kinase inhibition attenuates LPS-induced renal failure in mice in part by attenuation of NF-kB p65 signaling. Am J Physiol Ren. 2009; 296(46): 1088–99.

Kamaruddin MI, Nakamura-Shibasaki M, Mizuno Y, Kiuchi Y. Ocular hypotensive effects of a Rho-associated protein kinase inhibitor in rabbits. Clin Ophthalmol Auckl NZ. 2017; 11: 591–7.

Ripasudil [Internet]. [cited 2019 May 18]. Available from: https://www.drugbank.ca/drugs/DB13165

Isobe T, Ohta M, Kaneko Y, Kawai H. Species differences in metabolism of Ripasudil (K-115) are attributed to aldehyde oxidase. Xenobiotica Fate Foreign Compd Biol Syst. 2016; 46(7): 579–90.

Isobe T, Kasai T, Kawai H. Ocular Penetration and Pharmacokinetics of Ripasudil Following Topical Administration to Rabbits. J Ocul Pharmacol Ther Off J Assoc Ocul Pharmacol Ther. 2016; 32(7): 405–14.

DOI: https://doi.org/10.26618/aimj.v1i2.2755


  • There are currently no refbacks.

Copyright (c) 2019 Ilham Dhiya, Iskandar Purba G, Khartika Mahardini

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Flag Counter