Potential of Omega 3 Fatty Acids in Retinal Protection Through GPR120/-arrestin2 Signaling Pathway Activation as an Innovative Preventive and Curative Therapy of Retinopathy Diabetic

Kurnia Dwi Latifa, Made Indira D.Sanjiwani, W. Riski Widya Mulyani

Abstract


Diabetes mellitus especially type 2 diabetes mellitus is a chronic metabolic disease with a high prevalence and risk of complications. Diabetic retinopathy is a common complication. Current diabetic retinopathy therapy tends to be expensive and often leads to recurrence. Therefore more effective therapies are needed with abundant resources so that they are affordable for the community. Based on research, omega 3 fatty acids can be used as preventive and curative therapy for diabetic retinopathy. This modality is proven to be effective in preventing worsening of diabetic retinopathy and even reducing the signs of vascular abnormalities which are the main problem in this disease. Recent studies have also found signaling pathways involving GPR120 in the pathogenesis of diabetic retinopathy. Even GPR120 which is a receptor for omega 3 fatty acids has the potential as an effective therapeutic target in the prevention of worsening and treatment of diabetic retinopathy.

 

Keywords:            GPR120, Omega 3 fatty acids, diabetic retinopathy


Full Text:

PDF

References


World Health Organization. Global report on diabetes. World Health Organization; 2016.

Fowler MJ. Microvascular and macrovascular complications of diabetes. Clinical diabetes. 2008 Apr 1;26(2):77-82.

Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum?. Indian journal of endocrinology and metabolism. 2016 Jul;20(4):546.

Nentwich MM, Ulbig MW. Diabetic retinopathy-ocular complications of diabetes mellitus. World journal of diabetes. 2015 Apr 15;6(3):489.

Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64.

Leasher JL, Bourne RR, Flaxman SR, Jonas JB, Keeffe J, Naidoo K, Pesudovs K, Price H, White RA, Wong TY, Resnikoff S. Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes care. 2016 Sep 1;39(9):1643-9.

Das A, Stroud S, Mehta A, Rangasamy S. New treatments for diabetic retinopathy. Diabetes, Obesity and Metabolism. 2015 Mar;17(3):219-30.

Ong NH, Purcell TL, Roch-Levecq AC, Wang D, Isidro MA, Bottos KM, Heichel CW, Schanzlin DJ. Epithelial healing and visual outcomes of patients using omega-3 oral nutritional supplements before and after photorefractive keratectomy: a pilot study. Cornea. 2013 Jun 1;32(6):761-5.

Diabetic Retinopathy Clinical Research Network. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. New England Journal of Medicine. 2015 Mar 26;372(13):1193-203.

Diana FM. OMEGA 3. 2012;6(2):113–7.

Chen C, Yu X, Shao S. Effects of Omega-3 Fatty Acid Supplementation on Glucose Control and Lipid Levels in Type 2 Diabetes : A Meta- Analysis. 2015;1–14.

Chen J, Higuchi A, Hong S, Pravda EA, Majchrzak S. Reduces pathological retinal angiogenesis. 2015;13(7):868–73.

Querques G, Forte R, Souied EH. Retina and Omega-3. 2011;2011.

Shearer GC, Savinova O V, Harris WS. Fish oil - how does it reduce plasma triglycerides? 2013;1821(5):843–51.

Afonso MS, Oliveira V, Morari J, Santos GA, Koike MK, Lottenberg AM, et al. Flaxseed Oil Rich in Omega-3 Protects Aorta Against Inflammation and Endoplasmic Reticulum Stress Partially Mediated by GPR120 Receptor in Obese, Diabetic and Dyslipidemic Mice Models A. J Nutr Biochem [Internet]. 2017.

Dátilo MN, Ramos M, Ana S, Formigari GP, Rodrigues PB, Moura LP De, et al. Omega-3 from Flaxseed Oil Protects Obese Mice Against Diabetic Retinopathy Through GPR120 Receptor. 2018;(June):1–13.

Lemahieu C, Bruneel C, Ryckebosch E, Muylaert K, Buyse J, Foubert I. Impact of different omega-3 polyunsaturated fatty acid (n-3 PUFA) sources (flaxseed, Isochrysis galbana, fish oil and DHA Gold) on n-3 LC-PUFA enrichment (efficiency) in the egg yolk. Journal of Functional Foods. 2015 Dec 1;19:821-7

Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiological reviews. 2013;93(1):137–88.

Safi SZ, Qvist R, Kumar S, Ismail ISB. Molecular mechanisms of Diabetic Retinopathy, general preventive strategies and novel therapeutic targets. Exp Clin Endocrinol Diabetes. 2013;121(3):109

Diabetes Mellitus: A Fundamental and Clinical Text.Philadelphia, Pa, USA: Lippincott Williams & Wilkins; 2000.

Zong H, Ward M, Stitt AW. AGEs, RAGE, and diabetic retinopathy. Current Diabetes Reports. 2011;11(4):244–252.

Chan P, Kanwar M, Kowluru RA. Resistance of retinal inflammatory mediators to suppress after reinstitution of good glycemic control: novel mechanism for metabolic memory. Journal of Diabetes and its Complications. 2010;24(1):55-63.

Salem Jr N, Eggersdorfer M. Is the world supply of omega-3 fatty acids adequate for optimal human nutrition?. Current Opinion in Clinical Nutrition & Metabolic Care. 2015 Mar 1;18(2):147-54.).

Calder PC. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2015 Apr 1;1851(4):469-84.

Chew EY. Dietary intake of Omega-3 fatty acids from fish and risk of diabetic retinopathy. Jama. 2017 Jun 6;317(21):2226-7.

Iwase Y, Kamei N, Takeda-Morishita M. Antidiabetic effects of omega-3 polyunsaturated fatty acids: from mechanism to therapeutic possibilities. Pharmacology & Pharmacy. 2015 Mar 6;6(03):190.

Sandoval DA, D'Alessio DA. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiological reviews. 2015 Apr;95(2):513-48.

Liu HD, Wang WB, Xu ZG, Liu CH, He DF, Du LP, Li MY, Yu X, Sun JP. FFA4 receptor (GPR120): A hot target for the development of anti-diabetic therapies. European journal of pharmacology. 2015 Sep 15;763:160-8.

Vaughan RA, Garcia-Smith R, Bisoffi M, Conn CA, Trujillo KA. Conjugated linoleic acid or omega 3 fatty acids increase mitochondrial biosynthesis and metabolism in skeletal muscle cells. Lipids in health and disease. 2012 Dec;11(1):142.

Lepretti M, Martucciello S, Burgos Aceves M, Putti R, Lionetti L. Omega-3 fatty acids and insulin resistance: Focus on the regulation of mitochondria and endoplasmic reticulum stress. Nutrients. 2018;10(3):350.

Wang, L., Chen, K., Liu, K. et al. DHA Inhibited AGEs-Induced Retinal Microglia Activation Via Suppression of the PPARγ/NFκB Pathway and Reduction of Signal Transducers in the AGEs/RAGE Axis Recruitment into Lipid Rafts. Neurochem Res. 2015;40: 713

Tikhonenko M, Lydic TA, Opreanu M, Li Calzi S, Bozack S, McSorley KM, et al. N-3 Polyunsaturated Fatty Acids Prevent Diabetic Retinopathy by Inhibition of Retinal Vascular Damage and Enhanced Endothelial Progenitor Cell Reparative Function. PLoS One. Public Library of Science; 2013;8(1):1–10.

Connor KM, SanGiovanni JP, Lofqvist C, et al. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med. 2007;13(7):868-873.

Bays HE, Tighe AP, Sadovsky R, Davidson MH. Prescription omega-3 fatty acids and their lipid effects: physiologic mechanisms of action and clinical implications. Expert review of cardiovascular therapy. 2008 Mar 1;6(3):391-409.)

Fenwick EK, Xie J, Man RE, Sabanayagam C, Lim L, Rees G, Wong TY, Lamoureux EL. Combined poor diabetes control indicators are associated with higher risks of diabetic retinopathy and macular edema than poor glycemic control alone. PloS one. 2017 Jun 29;12(6):e0180252.

Roth DB, King A, Weiss M, Klein D. Systemic adverse events after bevacizumab. Ophthalmology. 2009;116:1226) (Osaadon P, Fagan XJ, Lifshitz T, Levy J. A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye. 2014 May;28(5):510)

Lafuente M, Ortín L, Argente M, Guindo JL, López-Bernal MD, López-Román FJ, García MJ, Domingo JC, Lajara J. Combined Intravitreal Ranibizumab And Oral Supplementation With Docosahexaenoic Acid And Antioxidants For Diabetic Macular Edema: Two-year Randomized Single-blind Controlled Trial Results. Retina. 2017 Jul 1;37(7):1277-86.




DOI: https://doi.org/10.26618/aimj.v3i1.2748

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Kurnia Dwi Latifa, Made Indira D.Sanjiwani, W. Riski Widya Mulyani

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Flag Counter