Case Study on ChatGPT’s Performance in Assisting Students with Physics Tests
Abstract
Keywords
Full Text:
PDFReferences
Abbas, N., Ali, I., Manzoor, R., Hussain, T., & Hussain, M. H. L. (2023). Role of artificial intelligence tools in enhancing students’ educational performance at higher levels. Journal of Artificial Intelligence Machine Learning and Neural Network, 3(5), 36–49. https://doi.org/10.55529/jaimlnn.35.36.49
Akavova, A., Temirkhanova, Z., & Lorsanova, Z. (2023). Adaptive learning and artificial intelligence in the educational space. E3s Web of Conferences, 451, 06011, 1-4. https://doi.org/10.1051/e3sconf/202345106011
Amin, B. D., Sahib, E. P., Harianto, Y. I., Patandean, A. J., Herman, & Sujiono, E. H. (2020). The interpreting ability on science kinematics graphs of senior high school students in South Sulawesi, Indonesia. Jurnal Pendidikan IPA Indonesia, 9(2), 179–186. https://doi.org/10.15294/jpii.v9i2.23349
Beichner, R. (1994). Testing student interpretation of kinematic graphs. American Journal of Physics, 62, 750-762. https://doi.org/10.1119/1.17449
Chiu, T. K. F., Moorhouse, B. L., Chai, C. S., & Ismailov, M. (2023). Teacher support and student motivation to learn with Artificial Intelligence (AI) based chatbot. Interactive Learning Environments, 32(7), 3240–3256. https://doi.org/10.1080/10494820.2023.2172044
Cooper, G. (2023). Examining science education in ChatGPT: an exploratory study of generative artificial intelligence. Journal of Science Education and Technology, 32, 444–452. https://doi.org/10.1007/s10956-023-10039-y
Eaton, P., & Willoughby, S. D. (2018). Confirmatory factor analysis applied to the force concept inventory. Physical Review Physics Education Research, 14, 1-11. https://doi.org/10.1103/physrevphyseducres.14.010124
Engelhardt, P. V., & Beichner, R. J. (2004). Students’ understanding of direct current resistive electrical circuits. American Journal of Physics, 72, 98–115. https://doi.org/10.1119/1.1614813
Farrokhnia, M., Banihashem, S. K., Noroozi, O., & Wals, A. (2023). A SWOT analysis of ChatGPT: implications for educational practice and research. Innovations in Education and Teaching International, 61(3), 460–474. https://doi.org/10.1080/14703297.2023.2195846
Gregorcic, B., & Pendrill, A. M. (2023). ChatGPT and the frustrated socrates. Physics Education, 58,1-9. https://doi.org/10.1088/1361-6552/acc299
Hashem, R., Ali, N., Zein, F. E., Fidalgo, P., Khurma, O. A. (2023). AI to the rescue: Exploring the potential of chatgpt as a teacher ally for workload relief and burnout prevention. Research and Practice in Technology Enhanced Learning, 19, 1-26. https://doi.org/10.58459/rptel.2024.19023
Henderson, R., & Stewart, J. (2018). Racial and ethnic bias in the force concept inventory. Conference Proceedings, 172–175. https://doi.org/10.1119/perc.2017.pr.038
Hidaayatullaah, H. N. (2022). The science literacy profile based on madrasah students’ misconceptions on science concepts. Proceedings of the International Conference on Madrasah Reform, 111-116. https://doi.org/10.2991/assehr.k.220104.017
Hikmatiar, H., Sya’bania, N., Jayadin., Kasman, R. A., Imranah., Sahlan., & Saputra, S. (2024). The effectiveness of Chatgpt in completing astronomy lectures: Building awareness of its use. Jurnal Pendidikan Fisika, 12(2), 121-130. https://doi.org/10.26618/jpf.v12i2.13587
Hoa, N. Q. (2023). AI and plagiarism: Opinion from teachers, administrators and policymakers. Proceedings of the Asiacall International Conference, 4, 75–85. https://doi.org/10.54855/paic.2346
Ivanjek, L., Morris, L., Schubatzky, T., Hopf, M., Burde, J. P., Haagen-Schützenhöfer, C., Dopatka, L., Spatz, V., & Wilhelm, T. (2021). Development of a two-tier instrument on simple electric circuits. Physical Review Physics Education Research, 17, 1-15. https://doi.org/10.1103/PhysRevPhysEducRes.17.020123
Kasepalu, R., Prieto, L. P., Ley, T., & Chejara, P. (2022). Teacher artificial intelligence-supported pedagogical actions in collaborative learning coregulation: A wizard-of-oz study. Frontiers in Education, 7, 1-15. https://doi.org/10.3389/feduc.2022.736194
Khan, R. A., Jawaid, M., Khan, A. R., & Sajjad, M. (2023). ChatGPT - Reshaping medical education and clinical management. Pakistan Journal of Medical Sciences, 39(2), 605-607. https://doi.org/10.12669/pjms.39.2.7653
Kim, S.-W. (2023). Change in attitude toward artificial intelligence through experiential learning in artificial intelligence education. International Journal on Advanced Science Engineering and Information Technology, 13(5), 1953–1959. https://doi.org/10.18517/ijaseit.13.5.19039
Linuwih, S. (2013). Konsepsi alternatif mahasiswa calon guru fisika tentang gaya-gaya yang bekerja pada balok. Jurnal Pengajaran MIPA, 18(1), 69-77. https://doi.org/10.18269/jpmipa.v18i1.259
Maries, A., & Singh, C. (2013). Exploring one aspect of pedagogical content knowledge of teaching assistants using the test of understanding graphs in kinematics. Physical Review Physics Education Research, 9, 1-14. https://doi.org/10.1103/physrevstper.9.020120
Phage, I. (2018). Undergraduate physics students’ conceptual understanding in the learning of kinematics using a blended approach. Ijaedu- International E-Journal of Advances in Education, 4(11), 199–204. https://doi.org/10.18768/ijaedu.455623
Phage, I. B., Lemmer, M., & Hitge, M. (2017). Probing factors influencing students’ graph comprehension regarding four operations in kinematics graphs. African Journal of Research in Mathematics, Science and Technology Education, 21(2), 200–210. https://doi.org/10.1080/18117295.2017.1333751
Polverini, G., & Gregorcic, B. (2024). Performance of ChatGPT on the test of understanding graphs in kinematics. Physical Review Physics Education Research, 20, 1-16. https://doi.org/10.1103/PhysRevPhysEducRes.20.010109
Remoto, J. P. (2023). ChatGPT and other AIs: Personal relief and limitations among mathematics-oriented learners. Environment and Social Psychology, 9(1), 1-13. https://doi.org/10.54517/esp.v9i1.1911
Suganda, T., Kusairi, S., Azizah, N., & Parno, P. (2020). The correlation of isomorphic, open-ended, and conventional score on the ability to solve kinematics graph questions. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 6(2), 173–180. https://doi.org/10.21009/1.06204
Sutopo, S., Parno, P., & Angin, S. L. (2017). Pemahaman mahasiswa tentang multi representasi konsep percepatan. Jurnal Riset dan Kajian Pendidikan Fisika, 4(2), 48-53. https://doi.org/10.12928/jrkpf.v4i2.6551
Wang, T., Lund, B. D., Marengo, A., Pagano, A., Mannuru, N. R., Teel, Z. A., & Pange, J. (2023). Exploring the Potential Impact of Artificial Intelligence (AI) on International Students in Higher Education: Generative AI, Chatbots, Analytics, and International Student Success. Applied Sciences, 13(11), 1-15. https://doi.org/10.3390/app13116716
Warsono, W., Nursuhud, P. I., Darma, R. S., Supahar, S., Oktavia, D. A., Setiyadi, A., & Kurniawan, M. A. (2020). Multimedia learning modules (MLMs) based on local wisdom in physics learning to improve student diagram representations in realizing the nature of science. International Journal of Interactive Mobile Technologies (Ijim), 14(6), 148-158. https://doi.org/10.3991/ijim.v14i06.11640
Zavala, G., Tejeda, S., Barniol, P., & Beichner, R. J. (2017). Modifying the test of understanding graphs in kinematics. Physical Review Physics Education Research, 13(2), 20111, 1-16. https://doi.org/10.1103/PhysRevPhysEducRes.13.020111
DOI: https://doi.org/10.26618/jpf.v13i1.16624
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Jurnal Pendidikan Fisika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Pendidikan Fisika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.