Analysis of Concept Understanding Test Items on Static Fluid Material Using Rasch Model

Ivan Danar Aditya Irawan, Ristanti Mulia Indraloka, Nur Akhyar Basri, Ummi Salmah, Parno Parno

Abstract


Conceptual understanding is a vital component in physics education, particularly for static fluid concepts, which are often sources of misconceptions among students. Common misunderstandings include incorrect interpretations of hydrostatic pressure and Pascal's law. This study aims to develop and analyze a conceptual understanding test instrument for static fluid materials using the Rasch Model. A descriptive quantitative research design was employed, involving 75 eleventh-grade students from three high schools in Lumajang and Malang, selected through cluster random sampling. The instrument comprised 16 multiple-choice questions based on eight conceptual indicators and underwent expert validation by two physics teachers. Data were analyzed using the Winstep application to assess validity, reliability, difficulty level, and item discrimination. The results revealed that 12 out of 16 test items met the validity criteria, with an expert validation score of 98.3% categorized as "very valid." Item reliability was rated at 0.96 (very good), while person reliability was 0.47 (very poor), indicating significant variations in student responses. The difficulty levels were balanced: 2 very easy items, two easy items, five moderate items, one difficult item, and two very difficult items. Discrimination analysis grouped respondents into two categories and items into seven distinct groups, showcasing the instrument's effectiveness in identifying variations in student understanding. In conclusion, the developed instrument is valid and reliable for assessing students' conceptual understanding of static fluid topics. The study highlights the need for further validation with larger and more diverse samples to enhance the instrument's applicability across broader educational contexts. 

Keywords


conceptual understanding; item analysis; Rasch model; static fluid

Full Text:

PDF

References


Adha, A., Rera, A., & Farisi, S. A. (2023). Analysis of the TGT cooperative learning model in physics learning: in terms of the implementation of procedures and principles. International Journal of Education and Teaching Zone, 2(1), 51–61. https://doi.org/10.57092/ijetz.v2i1.70

Alwan, M., & Alshurideh, M. T. (2022). The effect of digital marketing on purchase intention: Moderating effect of brand equity. International Journal of Data and Network Science, 6(3), 837–848. https://doi.org/10.5267/j.ijdns.2022.2.012

Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assesing: a revision of bloom’s taxonomy of educational objectives. Addison Wesley Longman, Inc

Andriani, R., Widya., Fadieny, N., & Permana, N. D. (2023). Development of conceptual understanding student tests to the basic physics subject; a rasch model. Co-Catalyst: Journal of Science Education Research and Theories, 1(1), 43–54. https://doi.org/10.33830/cocatalyst.vol1iss1.4891

Aryanti, R. D., Sari, E. Y. D., & Widiana, H. S. (2020). Aplikasi model rasch pada skala work engagement (utrecht work engagement scale). Jurnal Psikologi Integratif, 8(2), 61–77.

Atika, S. D., Santhalia, P. W., & Sudjito, D. N. (2023). STEAM integrated project based learning exploration against understanding the concept of static fluids. Jurnal Penelitian Pendidikan IPA, 9(7), 5357–5364. https://doi.org/10.29303/jppipa.v9i7.2905

Austvoll-Dahlgren, A., Guttersrud, Ø., Nsangi, A., Semakula, D., & Oxman, A. D. (2017). Measuring ability to assess claims about treatment effects: A latent trait analysis of items from the “claim evaluation tools” database using Rasch modelling. BMJ Open, 7(5), 1-10. https://doi.org/10.1136/bmjopen-2016-013185

Banda, H. J., & Nzabahimana, J. (2021). Effect of integrating physics education technology simulations on students’ conceptual understanding in physics: A review of literature. Physical Review Physics Education Research, 17(2), 1-18. https://doi.org/10.1103/PhysRevPhysEducRes.17.023108

Beatty, A., Berkhout, E., Bima, L., Pradhan, M., & Suryadarma, D. (2021). Schooling progress, learning reversal: Indonesia’s learning profiles between 2000 and 2014. International Journal of Educational Development, 85, 1-16. https://doi.org/10.1016/j.ijedudev.2021.102436

Bond, T. G., & Fox, C. M. (2013). Applying the Rasch model: Fundamental measurement in the human sciences. Psychology Press. https://doi.org/https://doi.org/10.4324/9781410614575

Ceran, S. A., & Ates, S. (2020). Conceptual understanding levels of students with different cognitive styles: An evaluation in terms of different measurement techniques. Eurasian Journal of Educational Research, 88, 149–178. https://doi.org/10.14689/ejer.2020.88.7

Djidu, H., Istiyono, E., & Widihastuti, W. (2023). Quality of performance assessment instruments for educators in higher education: Implementation of factor analysis and generalizability theory. Jurnal Penelitian dan Pengkajian Ilmu Pendidikan: E-Saintika, 7(2), 144–159. https://doi.org/10.36312/esaintika.v7i2.716

Grgic, J., Lazinica, B., Schoenfeld, B. J., & Pedisic, Z. (2020). Test–retest reliability of the one-repetition maximum (1RM) strength assessment: A systematic review. Sports Medicine – Open, 6(1), 1-6. https://doi.org/10.1186/s40798-020-00260-z

Grob, R., Holmeier, M., & Labudde, P. (2017). Formative assessment to support students’ competences in inquiry-based science education. Interdisciplinary Journal of Problem-Based Learning, 11(2), 1-7. https://doi.org/10.7771/1541-5015.1673

Gunawan, G., Nisrina, N., Suranti, N. M. Y., Herayanti, L., & Rahmatiah, R. (2018). Virtual laboratory to improve students’ conceptual understanding in physics learning. Journal of Physics: Conference Series, 1108, 1-6. https://doi.org/10.1088/1742-6596/1108/1/012049

Hakiki, R. S., Arsyad, M., & Khaeruddin, K. (2015). Upaya meningkatkan hasil belajar fisika siswa kelas VII SMP Negeri 30 Makassar melalui model pembelajaran kooperatif tipe snowball throwing. Jurnal Pendidikan Fisika, 3(3), 285–294. https://doi.org/https://doi.org/10.26618/jpf.v3i3.281

Irma, Z. U., Kusairi, S., & Yuliati, L. (2022). Level of students’ conceptual understanding of static fluid. Journal of Physics: Conference Series, 2392, 1-11. https://doi.org/10.1088/1742-6596/2392/1/012020

Jamaludin, J., & Batlolona, J. R. (2021). Analysis of students’ conceptual understanding of physics on the topic of static fluids. Jurnal Penelitian Pendidikan IPA, 7(SpecialIssue), 6–13. https://doi.org/10.29303/jppipa.v7ispecialissue.845

Lestari, K. E., & Yudhanegara, M. R. (2018). Penelitian pendidikan matematika: Panduan praktis menyusun skripsi, tesis, dan laporan penelitian dengan pendekatan kuantitatif, kualitatif, dan kombinasi disertasi dengan model pembelajaran dan kemampuan matematis. Refika Aditama.

Matondang, Z. (2009). Validitas dan reliabilitas suatu instrumen penelitian. Jurnal Tabularasa, 6(1), 87–97.

Mills, S. (2016). Conceptual understanding: A concept analysis. The Qualitative Report, 21(3), 546–557. https://doi.org/10.46743/2160-3715/2016.2308

Misbah, M., Trisnowati, E., Rahim, A., & Zb, A. (2022). Investigating problem solving and mathematical connections in solving the fermi-dirac equation. International Journal of Education and Teaching Zone, 1(2), 106–115. https://doi.org/10.57092/ijetz.v1i2.36

Muslichatun, M., Ellianawati, E., & Wardani, S. (2021). Analisis pemahaman konsep dan hasil belajar siswa dalam pembelajaran konsep rangka manusia berbantuan media interaktif berbasis android. Jurnal Profesi Keguruan, 7(1), 142–150.

Mutmainnah, B., Amni, Z., & Wahyudi, M. (2023). development of android-based mobile learning media using ADDIE model on static fluid topics for high school 11 th grade students. Konstan: Jurnal Fisika dan Pendidikan Fisika, 8(2), 125–133. https://doi.org/https://doi.org/10.20414/konstan.v8i02.471

Nafsih, N. Z., Festiyed., & Mufit, F., (2020). Meta analisis pengembangan instrumen tes keterampilan proses sains dalam pembelajaran fisika dan IPA. Jurnal Penelitian Pembelajaran Fisika. 6(1). 89-96. https://doi.org/10.24036/jppf.v6i1.108965

Nehru, N., Ananda, R., Zb, A., & Navalyyan, D. (2022). The analysis of mathematical critical thinking ability and mathematical creativity: Judging from the process of deriving the fermi-dirac formula. International Journal of Education and Teaching Zone, 1(2), 87–96. https://doi.org/10.57092/ijetz.v1i2.33

Planinic, M., Boone, W. J., Susac, A., & Ivanjek, L. (2019). Rasch analysis in physics education research: Why measurement matters. Physical Review Physics Education Research, 15(2), 1-14, . https://doi.org/10.1103/PhysRevPhysEducRes.15.020111

Prasetya, W. A., & Pratama, A. T. (2023). Item quality analysis using the Rasch model to measure critical thinking ability in the material of the human digestive system of Biology subject in high school. Jurnal Penelitian dan Evaluasi Pendidikan, 27(1), 76–91. https://doi.org/10.21831/pep.v27i1.58873

Purnasari, P. D., Silvester, S., & Lumbantobing, W. L. (2021). Pengembangan instrumen asesmen higher order thingking skills (hots) ditinjau dari gaya belajar siswa. Sebatik, 25(2), 571–580. https://doi.org/10.46984/sebatik.v25i2.1607

Purwanto, M. (2010). Evaluasi hasil belajar. Pustaka Pelajar

Rahmawati, M., & Suryadi, E. (2019). Guru sebagai fasilitator dan efektivitas belajar siswa. Jurnal Pendidikan Manajemen Perkantoran, 4(1), 49-54. https://doi.org/10.17509/jpm.v4i1.14954

Rismaulhijjah, W. A., & Kuswanti, N. (2022). Anslisis butir soal ulangan harian hasil pengembangan guru materi sistem gerak manusia kelas XI IPA. Bioedu: Berkala Ilmiah Pendidikan Biologi, 11(3), 643–661. https://doi.org/https://doi.org/10.26740/bioedu.v11n3.p643-661

Sari, D. K. (2020). Analisis instrumen penilaian kemampuan pemodelan matematis pada kelas fisika menggunakan rasch model. Mega: Jurnal Pendidikan Matematika, 1(1), 47–52. https://doi.org/https://doi.org/10.59098/mega.v1i1.182

Scott, T. F., & Schumayer, D. (2017). Conceptual coherence of non-Newtonian worldviews in Force Concept Inventory data. Physical Review Physics Education Research, 13(1), 1-12. https://doi.org/10.1103/PhysRevPhysEducRes.13.010126

Setyaedhi, H. S., Mustaji., & Fitri, C. (2023). Empirical quality of final exam questions in a learning management system-based course. JPI (Jurnal Pendidikan Indonesia), 12(1), 78–88. https://doi.org/10.23887/jpiundiksha.v12i1.52262

Shea, T. L., Tennant, A., & Pallant, J. F. (2009). Rasch model analysis of the depression, anxiety and stress scales (DASS). BMC Psychiatry, 9, 1–10. https://doi.org/10.1186/1471-244X-9-21

Shishigu, A., Hailu, A., & Anibo, Z. (2018). Problem-based learning and conceptual understanding of college female students in physics. Eurasia Journal of Mathematics, Science and Technology Education, 14(1), 145–154. https://doi.org/10.12973/ejmste/78035

Sumintono, B., & Widhiarso, W. (2015). Aplikasi pemodelan rasch pada assessment pendidikan. (1st ed., Vol. 1). Trim Komunikata.

Syaifullah, S., Suharto, S., & Suryanti, Y. (2020). Hubungan pemahaman konsep trigonometri dengan hasil belajar fisika pada materi vektor. Seminar Nasional Pendidikan STKIP Kusuma Negara II, 381–387.

Tinôco, M. A., Gouveia, É. R., Ihle, A., Marques, A., Gouveia, B. R., & Kliegel, M. (2019). The cognitive telephone screening instrument (cogtel): A reliable and valid tool for the assessment of cognitive functioning in the Brazilian elderly. Revista Brasileira de Geriatria e Gerontologia, 22(1), 1-8. https://doi.org/10.1590/1981-22562019022.180130

Zvoch, K., Holveck, S., & Porter, L. (2021). Teaching for conceptual change in a density unit provided to seventh graders: A comparison of teacher- and student-centered approaches. Research in Science Education, 51(5), 1395–1421. https://doi.org/10.1007/s11165-019-09907-8




DOI: https://doi.org/10.26618/jpf.v13i1.15687

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jurnal Pendidikan Fisika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View JPF Stats

   Free counters!

Jurnal Pendidikan Fisika  is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.