Improving Students' Computational Skills through the Implementation of Problem-Solving Laboratory Learning Models

Dindin Nasruddin, Novia Melinda, Chaerul Rochman

Abstract


In the digital era, computational thinking skills are essential for students to succeed in science education, including physics. However, traditional teaching methods often fail to cultivate these skills effectively. This study aimed to evaluate the effectiveness of the problem-solving laboratory learning model in enhancing students' computational thinking skills, specifically in alternating current electricity topics. The research employed a pre-experimental design with a one-group pre-test and post-test approach, involving 35 twelfth-grade students from a public high school in Banjar City, West Java, Indonesia. Data were collected using observation sheets to assess problem-solving laboratory implementation and computational thinking skill tests. The problem-solving laboratory model was implemented effectively, achieving an average implementation success rate of 78.4%. The analysis revealed a significant improvement in students' computational thinking skills, with an average N-gain score of 0.73, categorized as high. Among the computational thinking indicators, abstraction showed the highest improvement, followed by decomposition, data analysis, pattern recognition, and algorithmic thinking. These results suggest that the problem-solving laboratory model provides an effective framework for fostering computational thinking skills through hands-on problem-solving activities and structured learning processes. The study recommends integrating the problem-solving laboratory model into other physics topics and broader educational contexts to enhance students' 21st-century competencies. Future research should consider incorporating control groups and extending the scope to explore long-term impacts across diverse learning environments.

Keywords


alternating current; computational thinking; learning model; problem-solving laboratory

Full Text:

PDF

References


Asdar, A., Nurlina, N., & Handayani, Y. (2020). Application of problem based learning model to enhance students’ physics learning outcomes at class XI MIPA 3 SMA Negeri 8 Gowa. Jurnal Pendidikan Fisika, 8(3), 310–318. https://doi.org/10.26618/jpf.v8i3.3938

Azizah, N., & Edie, S. S. (2014). Pendekatan problem solving laboratory untuk meningkatkan kreatifitas dan hasil belajar siswa kelas XI MA Al Asror Gunungpati Semarang. UPEJ Unnes Physics Education Journal, 3(3), 28-33. https://doi.org/10.15294/upej.v3i3.4328

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community?. Acm Inroads, 2(1), 48–54. https://doi.org/10.1145/1929887.1929905

Batul, F. A., Pambudi, D. S., & Prihandoko, A. C. (2022). Pengembangan perangkat pembelajaran model sscs dengan pendekatan rme dan pengaruhnya terhadap kemampuan berpikir komputasional. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 11(2), 1282-1296. https://doi.org/10.24127/ajpm.v11i2.5074

Dishon, G., & Gilead, T. (2021). Adaptability and its discontents: 21st-century skills and the preparation for an unpredictable future. British Journal of Educational Studies, 69(4), 393–413. https://doi.org/10.1080/00071005.2020.1829545

Gürses, A., Açıkyıldız, M., Doğar, Ç., & Sözbilir, M. (2007). An investigation into the effectiveness of problem‐based learning in a physical chemistry laboratory course. Research in Science & Technological Education, 25(1), 99–113. https://doi.org/10.1080/02635140601053641

Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66, 64–74. https://doi.org/10.1119/1.18809

Heller, K., & Heller, P. (2012). Physics education research and development group problem solving labs: frequently asked questions about our problem-solving labs. Department of Physics University of Minnesota [Online] Available at: Http://Www. Umn. Edu/612-625-5000.

Irwansyah, F. S., Yusuf, Y. M., Sugilar, H., Nasrudin, D., Ramdhani, M. A., & Salamah, U. (2019). Implementation of fun science learning to increase elementary school students’ skill in science and technology. Journal of Physics: Conference Series, 1318, 1-6. Doi. 10.1088/1742-6596/1318/1/012063

Jamna, N. D., Hamid, H., & Bakar, M. T. (2022). Analisis kemampuan berpikir komputasi matematis siswa SMP pada materi persamaan kuadrat. Jurnal Pendidikan Guru Matematika, 2(3). https://doi.org/10.33387/jpgm.v2i3.5149

Kadir, H. D., Arsyad, M., & Marisda, D. H. (2020). Implementation of problem solving methods in elasticity course. Jurnal Pendidikan Fisika, 8(3), 279–285. https://doi.org/10.26618/jpf.v8i3.3803

Kamil, M. R. (2021). Analisis kemampuan berpikir komputasional matematis Siswa Kelas IX SMP Negeri 1 Cikampek pada materi pola bilangan. AKSIOMA: Jurnal Matematika dan Pendidikan Matematika, 12(2), 259–270. https://doi.org/10.26877/aks.v12i2.8447

Kramer, J. (2007). Is abstraction the key to computing?. Communications of the ACM, 50(4), 36–42. https://doi.org/10.1145/1232743.1232745

Leite, L., & Dourado, L. (2013). Laboratory activities, science education and problem-solving skills. Procedia-Social and Behavioral Sciences, 106, 1677–1686. https://doi.org/10.1016/j.sbspro.2013.12.190

Malik, A., Yuningtias, U. A., Mulhayatiah, D., Chusni, M. M., Sutarno, S., Ismail, A., & Hermita, N. (2019). Enhancing problem-solving skills of students through problem solving laboratory model related to dynamic fluid. Journal of Physics: Conference Series, 1157, 1-6. doi:10.1088/1742-6596/1157/3/032010

Mariati, P. S. (2012). Pengembangan model pembelajaran fisika berbasis problem solving untuk meningkatkan kemampuan metakognisi dan pemahaman konsep mahasiswa. Jurnal Pendidikan Fisika Indonesia, 8(2), 152-160. https://doi.org/10.15294/jpfi.v8i2.2155

Muhajir, S. N., Mahen, E. C. S., Yuningsih, E. K., & Rochman, C. (2015). Implementasi model problem solving laboratory untuk meningkatkan kemampuan literasi sains mahasiswa pada mata kuliah fisika dasar II. Prosiding Simposium Nasional Inovasi dan Pembelajaran Sains, 549-552.

Mulhayatiah, D., Fitriyanti, N., Setya, W., Suhendi, H. Y., Nasrudin, D., & Malik, A. (2019). Implementation of OPTIKU pocket book based Android for enhancing problem solving ability. Journal of Physics: Conference Series, 1402, 1-4. Doi. 10.1088/1742-6596/1402/4/044100

Nasrudin, D., Rochman, C., Dirgantara, Y., & Suhada, I. (2017). Mengukur efektivitas peer teaching dalam pembelajaran fisika. Seminar Nasional Fisika (SiNaFi), 1(1), 318–332.

Oliveira, K. K. de S., & de Souza, R. A. C. (2022). Digital transformation towards education 4.0. Informatics in Education, 21(2), 283–309. https://doi.org/10.15388/infedu.2022.13

Parlons. (2018). Computational thinking framework 2018. Let’s Talk Science

Putri, M. R., Ristanto, S., Nuvitalia, D., & Saptaningrum, E. (2022). Need assessment pengembangan model pembelajaran yang bertujuan untuk meningkatkan kemampuan berpikir komputasional siswa. Prosiding Seminar Nasional Lontar Physics Forum, 155–160.

Rahayu, Y. N., Nasrudin, D., Nardiatun, S. H., & Millah, M. F. (2018). Modified student activity sheet and improving problem solving skill. Proceedings of the 1st International Conference on Educational Sciences, 2, 309-313.

Rochman, C., Nasrudin, D., & Kariadinata, R. (2017). Authentic assessment based on teaching and learning trajectory. Prosiding International Conference on Sociology Education Bandung, 1, 174-177.

Santoso, H., Rochadiani, T. H., & Mayatopani, H. (2020). Pengembangan berpikir komputasional melalui pemrograman dasar dengan mit app inventor. Jurnal Pengabdian Masyarakat, 1(1), 1–10.

Sari, S., Rohmah, S., Sobandi, O., & Nasrudin, D. (2020). Project based learning to develop student’s creativities and characters in designing experiments. Journal of Physics: Conference Series, 1521, 1-6. Doi. 10.1088/1742-6596/1521/4/042086

Satria, E., Sa’ud, U. S., Sopandi, W., Tursinawati, T., Rahayu, A. H., & Anggraeni, P. (2022). Pengembangan media animasi interaktif dengan pemograman scratch untuk mengenalkan keterampilan berpikir komputasional. Jurnal Cerdas Proklamator, 10(2), 217–228. https://doi.org/10.37301/cerdas.v10i2.169

Suhendi, H. Y., Mulhayatiah, D., Nasrudin, D., Rochman, C., Malik, A., & Ardiansyah, R. (2023). The application of video based laboratory in vibrations and waves concept. AIP Conference Proceedings, 2646(1), 1-6. https://doi.org/10.1063/5.0113725

Wilujeng, I. T. D., & Suliyanah, S. (2022). The implementation of problem based learning model: an effort in upgrading students’ problem-solving skills. Jurnal Pendidikan Fisika, 10(2), 123–129. https://doi.org/10.26618/jpf.v10i2.7187

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb, J. T. (2011). Introducing computational thinking in education courses. Proceedings of the 42nd ACM Technical Symposium on Computer Science Education, 465–470. https://doi.org/10.1145/1953163.1953297




DOI: https://doi.org/10.26618/jpf.v12i3.10946

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jurnal Pendidikan Fisika

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

View JPF Stats

   Free counters!

Jurnal Pendidikan Fisika  is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.