The Impact of Augmented Reality Media on High School Students’ Critical Thinking Skills in Physics

DOI: https://doi.org/10.26618/zsft6997

Authors

  • Muh Iqbal Hasan Department of Physics, Faculty Mathematics and Natural Science, Universitas Negeri Makassar, Indonesia
  • Kaharuddin Arafah Department of Physics, Faculty Mathematics and Natural Science, Universitas Negeri Makassar, Indonesia
  • Mutahharah Hasyim Department of Physics, Faculty Mathematics and Natural Science, Universitas Negeri Makassar, Indonesia

augmented reality, critical thinking skills, digital learning media, physics education

Abstract

The rapid development of digital technologies has created new opportunities to enhance learning processes in science education, particularly in physics, which is often perceived as abstract and conceptually difficult. Students frequently struggle to interpret invisible phenomena such as electric charges and fields, leading to misconceptions that hinder higher-order thinking skills. In response to this challenge, augmented reality (AR) has emerged as a promising instructional tool capable of visualizing abstract concepts and fostering active engagement. This study aimed to investigate the effect of AR-based learning media on students’ critical thinking skills in high school physics. A quasi-experimental design with a posttest-only nonequivalent control group was employed, involving two intact Grade XII classes: the experimental group (n = 32) received instruction using PyLo-AR, while the control group (n = 33) was taught through conventional methods. Data were collected using a validated essay test that measured four critical thinking indicators: interpretation, analysis, evaluation, and inference. The results of descriptive analysis showed that the experimental group achieved a higher mean score (M = 14.56, SD = 2.03) compared to the control group (M = 12.94, SD = 1.95). Inferential analysis using the independent samples t-test indicated a statistically significant difference between the groups (p = 0.002), confirming the effectiveness of AR-based instruction. The novelty of this research lies in its focus on critical thinking outcomes rather than solely on conceptual understanding or motivation. In conclusion, AR-based media not only improve students’ mastery of abstract physics concepts but also strengthen their critical thinking skills, offering meaningful contributions to the advancement of physics education in the twenty-first century.

References

Ahzari, S., & Akmam, A. (2025). Analyzing students’ critical thinking as a basis for developing interactive physics multimedia with generative learning and cognitive conflict strategies. Jurnal Pendidikan Fisika, 13(2), 163–176. https://doi.org/10.26618/jpf.v13i2.17702

Akhiruyanto, A., & Yudhistira, D. (2024). Trends in augmented reality and virtual reality studies in sports education: Bibliometric analysis of the Scopus database for 2019–2024. Physical Education Theory and Methodology, 24(4), 643–650. https://doi.org/10.17309/tmfv.2024.4.17

Andriani, A. A. (2016). Pengaruh model pembelajaran problem based learning terhadap kemampuan berpikir kritis mahasiswa program studi pendidikan fisika Universitas Muhammadiyah Makassar. Jurnal Pendidikan Fisika, 4(1), 106–111. https://doi.org/10.26618/jpf.v4i1.302

Arni, K. J. (2025). Systematic review of research trends on critical thinking skills in physics learning. International Journal of Science Education and Science, 2(1), 43–52. https://doi.org/10.56566/ijses.v2i1.262

Azzahra, D. W., Awalyah, N., Raldiastari, S., & Sulfa, M. (2024). Peningkatan kemampuan berpikir kritis dan penyelesaian masalah dengan menggunakan model problem based learning pada siswa kelas V UPTD SDN 104 Inpres Makkaraeng Kabupaten Maros. Jurnal Guru Pencerah Semesta, 2(4), 731–739. https://doi.org/10.56983/jgps.v2i4.1194

Azzahra, W., Diana, S., Nuraeni, E., Yusni, D., & Andriyatno, I. (2024). Integration of augmented reality (AR) in biology education: A systematic literature review. The Eurasia Proceedings of Educational and Social Sciences, 34, 61–70. https://doi.org/10.55549/epess.792

Campbell, D. T., & Stanley, J. C. (2015). Experimental and quasi-experimental designs for research. Ravenio Books.

Chang, Q., Pan, X., Manikandan, N., & Ramesh, S. (2022). Artificial intelligence technologies for teaching and learning in higher education. International Journal of Reliability, Quality and Safety Engineering, 29(5), 2240006. https://doi.org/10.1142/S021853932240006X

Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design and analysis issues for field settings. Rand McNally College Publishing Company.

Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). Sage Publications.

Facione, P. (2015). Critical thinking: What it is and why it counts. Insight Assessment.

Fariyani, Q., Nisak, N. K., & Safitri, I. (2025). Analysis of science literacy of physics education students at UIN Walisongo Semarang using the PISA model test instrument. Physics Education Research Journal, 7(1), 1–8. https://journal.walisongo.ac.id/index.php/perj/article/view/27704

Fatonah, A., Worku, H., & Inyang, F. (2024). Improving student learning outcomes on earth layers material by using audio visual media. Schrödinger: Journal of Physics Education, 5(2), 53–61. https://doi.org/10.37251/sjpe.v5i2.887

Fraenkel, J. R., & Wallen, N. E. (2019). How to design and evaluate research in education (7th ed.). McGraw Hill Higher Education.

Hahn, M. D., Machado, N. A., Carvalho, P. S., Cruz, F. A. D. (2025). Using physics simulation to understand biology process of ion channels. Physics Education, 60(5), 1-10. https://ui.adsabs.harvard.edu/link_gateway/2025PhyEd..60e5027H/doi:10.1088/1361-6552/adf7f9

Herliana, F., Mardila, R., Mahzum, E., Zainuddin, Z., Wahyuni, A., Elisa., E., & Muliyati, D. (2025). The effect of web-based inquiry physics problems on high school students’ physics learning outcomes. Jurnal Pendidikan Fisika, 13(2), 206–224. https://doi.org/10.26618/jpf.v13i2.17788

Hidajat, F. A. (2024). Augmented reality applications for mathematical creativity: A systematic review. Journal of Computers in Education, 11(4), 991-1040. Springer Berlin Heidelberg. https://doi.org/10.1007/s40692-023-00287-7

Hidayat, R., & Wardat, Y. (2024). A systematic review of augmented reality in science, technology, engineering and mathematics education. Education and Information Technologies, 29(8), 9257–9282. https://doi.org/10.1007/s10639-023-12157-x

Hidayatunnajah, H. (2021). Pengaruh media pembelajaran augmented reality berbasis Android terhadap kemampuan berpikir kritis peserta didik pada konsep suhu dan kalor. Skripsi. UIN Syarif Hidayatullah Repository. https://repository.uinjkt.ac.id/dspace/handle/123456789/60510

Lubis, J. A., Pantiwati, Y., & Rahardjanto, A. (2025). Students’ scientific literacy in critical thinking skills in science learning: A bibliometric analysis from the Scopus database. Bioscientist: Jurnal Ilmiah Biologi, 13(2), 1100–1112. https://e-journal.undikma.ac.id/index.php/bioscientist/article/view/15732

Luthfi, A., Muskhir, M., Effendi, H., Jalinus, N., & Nikolaevna, G. M. (2025). Mapping the future of augmented reality in 21st century education: A comprehensive bibliometric review. Journal of Hypermedia & Technology-Enhanced Learning, 3(2), 165–184. https://doi.org/10.58536/j-hytel.173

Martawijaya, M. A., Rahmadhanningsih, S., Swandi, A., Hasyim, M., & Sujiono, E. H. (2023). The effect of applying the ethno-STEM-project-based learning model on students’ higher-order thinking skill and misconception of physics topics related to Lake Tempe, Indonesia. Jurnal Pendidikan IPA Indonesia, 12(1), 1–13. https://doi.org/10.15294/jpii.v12i1.38703

Mor, B., Patel, R. N., & Prajapati, B. (2025). 21st-century competencies in physics: Assessment strategies for critical thinking, problem-solving, and character formation. Schrödinger: Journal of Physics Education, 6(2), 135-143. https://doi.org/10.37251/sjpe.v6i2.2030

Nasar, A., Sinar, Y., & Nanut, F. A. (2025). Integrating inquiry-based learning with PHET simulations: A strategy to enhance higher-order thinking skills. Jurnal Pendidikan Fisika, 13(2), 151–162. https://doi.org/10.26618/jpf.v13i2.17563

Nurjanah, S., Iqbal, M., Sultan, J., Sholihin, S., Ulyasari, N, & Rashid, S. (2024). Research trends of augmented reality in physics education based on Scopus database in thirteen years (2010–2023): A bibliometric approach. Journal of Science Education Research, 9(3), 438–452. https://dx.doi.org/10.26737/jipf.v9i3.5383

Pujono, E., Maulana, F., David, A., & Opeyemi, B. (2024). Exploring innovative approaches: Optimizing Google Classroom for enhanced motivation in science learning. Schrödinger: Journal of Physics Education, 5(2), 39–45. https://doi.org/10.37251/sjpe.v5i2.965

Rachmawati, F. A., & Wiyatmo, Y. (2025). The effectiveness of a renewable energy e-worksheet in STEM-project-based learning to improve students’ critical thinking and collaboration skills. Jurnal Pendidikan Fisika, 13(2), 119–132. https://doi.org/10.26618/jpf.v13i2.17432

Rahmat, A. D., Kuswanto, H., & Wilujeng, I. (2023). A systematic literature review of integrating augmented reality technology in science learning. Jurnal Inovasi Dan Teknologi Pembelajaran, 10(2), 172–181. http://dx.doi.org/10.17977/um031v10i22023p172

Razali, N., & Wah, Y. (2011). Power comparisons of Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors and Anderson–Darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21–33. https://www.semanticscholar.org/paper/Power-comparisons-of-Shapiro-Wilk-%2C-%2C-Lilliefors-Razali-Wah/dcdc0a0be7d65257c4e6a9117f69e246fb227423

Sari, I. M., Karim, S., Lubis, M. H., Saepuzaman, D., & Sinaga, P. (2020). Efektivitas model based learning (MBL) dalam meningkatkan penguasaan konsep peserta didik pada materi kalor dan perpindahannya. WaPFi (Wahana Pendidikan Fisika), 5(1), 23–30. https://doi.org/10.17509/wapfi.v5i1.23422

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin.

Sianipar, P., T., G., Wilonotomo, W., & Assiroj, P. (2025). Exploring the role of augmented reality in education: Systematic literature review. JUTI: Jurnal Ilmiah Teknologi Informasi, 23(2), 48–59. https://doi.org/10.12962/j24068535.v23i2.a1267

Siregar, K. D. P., Ramadhaniyati, R., Muhammad, I., & Triansyah, F. A. (2023). Analisis bibliometrik: Fokus penelitian critical thinking pada sekolah menengah (1992–2023). EDUKASIA: Jurnal Pendidikan dan Pembelajaran, 4(1), 349–360. https://doi.org/10.62775/edukasia.v4i1.265

Supriyadi, E., Juandi, D., Turmudi, T., & Pebrianti, A. (2023). Augmented reality in mathematics education: A bibliometric analysis utilizing the Scopus database. Journal on Mathematics Education Research (J-MER), 4(2), 113–124. https://doi.org/10.17509/j-mer.v4i2.65081

Volioti, C., Keramopoulos, E., Sapounidis, T., Melisidis, K., Zafeiropoulou, M., Sotiriou, C., & Spiridis, V. (2022). Using augmented reality in K-12 education: An indicative platform for teaching physics. Information (Switzerland), 13(7), 1-27. https://doi.org/10.3390/info13070336

Zhang, J., Li, G., Huang, Q., Feng, Q., & Luo, H. (2022). Augmented reality in K–12 education: A systematic review and meta-analysis of the literature from 2000 to 2020. Sustainability (Switzerland), 14(15), 1-17. https://doi.org/10.3390/su14159725

Zufahmi, Z., Rohman, F., & Sari, M. S. (2025). Augmented reality in science learning: A systematic literature review. Journal of Science Education Review, 11(1), 274–291. https://doi.org/10.22219/jpbi.v11i1.38570

Zulkarnaen, Z., Rahayu, S., & Artayasa, I. P. (2025). Trends in project-based learning for developing critical thinking skills in science education: A bibliometric review. International Journal of Science Education and Science, 2(1), 26–34. https://doi.org/10.56566/ijses.v2i1.258

Published

2025-09-27

How to Cite

The Impact of Augmented Reality Media on High School Students’ Critical Thinking Skills in Physics. (2025). Jurnal Pendidikan Fisika, 13(3), 606-619. https://doi.org/10.26618/zsft6997

How to Cite

The Impact of Augmented Reality Media on High School Students’ Critical Thinking Skills in Physics. (2025). Jurnal Pendidikan Fisika, 13(3), 606-619. https://doi.org/10.26618/zsft6997