Artificial Intelligence in Physics Education Research in Two Decades: A Bibliometric Study from Scopus Database
Abstract
Physics education has witnessed a surge in research exploring the integration of Artificial Intelligence (AI) technologies, aiming to optimize instructional strategies and promote student engagement. This study aims to conduct a comprehensive bibliometric analysis of studies related to AI in physics education, identifying trends, patterns, and future research directions in this emerging field. A systematic literature search was conducted on the Google Scholar database, employing specific keywords and inclusion criteria. Data analysis was facilitated by Biblioshiny and VOSviewer software tools. The analysis revealed a growing interest in AI applications in physics education, with a notable increase in publications from 2020 to 2023. Key topics included chatbot applications, assessment methods, computational approaches, virtual simulations, and AI integration in learning. The overlay visualization depicted the evolution of research, highlighting the emergence of pre-trained language models, misconception detection, and natural language processing in recent years. The findings underscore the potential of AI technologies to revolutionize physics education, offering opportunities for personalized learning experiences, automated assessment, and innovative teaching approaches. Future studies should focus on developing adaptive assessment systems, exploring AI-driven tools for promoting problem-solving and scientific attitudes, and investigating the seamless integration of AI technologies in physics classrooms. Additionally, interdisciplinary collaborations among researchers, educators, and technology experts could accelerate the development of cutting-edge AI solutions tailored to physics education.
Keywords
References
Al Ka’bi, A. (2023). Proposed artificial intelligence algorithm and deep learning techniques for development of higher education. International Journal of Intelligent Networks, 4, 68–73. https://doi.org/10.1016/j.ijin.2023.03.002
Aleedy, M., Atwell, E., & Meshoul, S. (2022). Using AI Chatbots in Education: Recent Advances Challenges and Use Case. https://doi.org/10.1007/978-981-19-1653-3_50
Alhousseini, I., Chemissany, W., Kleit, F., & Nasrallah, A. (2019). Physicist’s journeys through the ai world - a topical review. There is no royal road to unsupervised learning. Computer Science Cornell University. http://arxiv.org/abs/1905.01023
Ali, A. S. A., Jazaei, F., Clement, T. P., & Waldron, B. (2024). Physics-informed neural networks in groundwater flow modeling: Advantages and future directions. Groundwater for Sustainable Development, 25, 101172. https://doi.org/10.1016/j.gsd.2024.101172
Amiruddin, M. Z. Bin, Samsudin, A., Suhandi, A., Sari, E. P. D. N., & Arrafi, W. Q. L. (2023). The potential of Artificial Intelligence (AI) in the field of education and physics learning: A literature review. 4rd UIN Imam Bonjol International Conference on Islamic Education, 432–444. https://ibicie.uinib.ac.id/index.php/ibicie/article/view/85
Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Baharuddin, R. A., Hashim, N. M., & Malek, J. A. (2020). Bibliometric analysis of knowledge and awareness toward climate change from 2010 to 2019. RSU International Research Conference 2020, 1577–1589. https://doi.org/https://doi.org/10.14458/RSU.res.2020.46
Church, W., Ford, T., Perova, N., & Rogers, C. (2010). Physics with robotics: Using LEGO® MINDSTORMS® in high school education. AAAI Spring Symposium - Technical Report, 47–49.
Corrin, L., Thompson, K., Hwang, G. J., & Lodge, J. M. (2022). The importance of choosing the right keywords for educational technology publications. Australasian Journal of Educational Technology, 38(2). https://doi.org/10.14742/ajet.8087
Dahlkemper, M. N., Lahme, S. Z., & Klein, P. (2023). How do physics students evaluate artificial intelligence responses on comprehension questions? A study on the perceived scientific accuracy and linguistic quality of ChatGPT. Physical Review Physics Education Research. https://doi.org/10.1103/PhysRevPhysEducRes.19.010142
Dai, K., & Wang, L.-F. (2021). Research of effective structural engineering course teaching based on artificial intelligence. Proceedings - 2021 2nd International Conference on Information Science and Education, ICISE-IE 2021, 1398–1401. https://doi.org/10.1109/ICISE-IE53922.2021.00312
Datcu, M., Huang, Z., Anghel, A., Zhao, J., & Cacoveanu, R. (2023). Explainable, physics-aware, trustworthy artificial intelligence: A paradigm shift for synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 11(1), 8–25.
De La Cruz-Romero, D. M. L., & Ovalle, C. (2022). Virtual assistant based on Artificial Intelligence as a Thesis tool for university students in the Engineering career. In L. P. M.M., T. J., P. A., & V. J.A.S. (Eds.), Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology (Vols. 2022-July). Latin American and Caribbean Consortium of Engineering Institutions. https://doi.org/10.18687/LACCEI2022.1.1.163
Destari, S. I., Sahidu, H., & Gunada, W. (2022). Pengembangan perangkat pembelajaran berbasis multiple intelligences untuk meningkatkan motivasi dan hasil belajar fisika peserta didik SMA. Jurnalfkip.Unram. https://doi.org/10.29303/jpft.v8iSpecial
Dong, S., & Chen, H. (2024). Artificial intelligence and IoT based optical quantum computing application legal implications in privacy and regulatory analysis. Optical and Quantum Electronics, 56(4), 556. https://doi.org/10.1007/s11082-023-06161-1
Dos Santos, R. P. (2023). Enhancing physics learning with chatgpt, bing chat, and bard as agents-to-think-with: A comparative case study. SSRN. https://edisconstant.wordpress.com/
Dunjko, V., & Briegel, H. J. (2018). Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Reports on Progress in Physics, 81(7), 074001. https://doi.org/10.1088/1361-6633/aab406
Ellegaard, O., & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact? Scientometrics, 105(3), 1809–1831. https://doi.org/10.1007/s11192-015-1645-z
Faroughi, S. A., Pawar, N. M., Fernandes, C., Raissi, M., Das, S., Kalantari, N. K., & Kourosh Mahjour, S. (2024). Physics-guided, physics-informed, and physics-encoded neural networks and operators in scientific computing: Fluid and solid mechanics. Journal of Computing and Information Science in Engineering, 24(4). https://doi.org/10.1115/1.4064449
Ge, X. L., Yin, Y. W., & Feng, S. (2018). Application research of computer artificial intelligence in college student sports autonomous learning. Kuram ve Uygulamada Egitim Bilimleri, 18(5), 2143–2154. https://doi.org/10.12738/estp.2018.5.114
Ghalambaz, S., Abbaszadeh, M., Sadrehaghighi, I., Younis, O., Ghalambaz, M., & Ghalambaz, M. (2024). A forty years scientometric investigation of artificial intelligence for fluid-flow and heat-transfer (AIFH) during 1982 and 2022. Engineering Applications of Artificial Intelligence, 127, 107334. https://doi.org/10.1016/j.engappai.2023.107334
Ghosh, A., Chakraborty, D., & Law, A. (2018). Artificial intelligence in internet of things. CAAI Transactions on Intelligence Technology, 3(4), 208–218.
Gurcan, F., Ozyurt, O., & Cagiltay, N. E. (2021). Investigation of Emerging Trends in the E-Learning Field Using Latent Dirichlet Allocation. International Review of Research in Open and Distributed Learning, 22(2). https://doi.org/10.19173/irrodl.v22i2.5358
Han, B. (2019). Application of artificial intelligence in autonomous English learning among college students. International Journal of Emerging Technologies in Learning, 14(6), 63–74. https://doi.org/10.3991/ijet.v14i06.10157
Hsieh, Y.-L., & Yeh, S.-C. (2024). The trends of major issues connecting climate change and the sustainable development goals. Discover Sustainability, 5(1), 31. https://doi.org/10.1007/s43621-024-00183-9
Ibrahim, W. M. R. W., & Hassan, R. (2019). Recruitment trends in the era of industry 4.0 using artificial intelligence: Pro and cons. Asian Journal of Research in Business and Management, 1(1), 16–21.
Jho, H. (2020). Discussion for how to apply artificial intelligence to physics education. In New Physics: Sae Mulli. researchgate.net. https://www.researchgate.net/profile/Hunkoog-Jho/publication/347414679_Discussion_for_how_to_Apply_Artificial_Intelligence_to_Physics_Education_Korean/links/604db057a6fdcccfee7d23e5/Discussion-for-how-to-Apply-Artificial-Intelligence-to-Physics-Education-
Jing, Y., & Ouyang, F. (2023). The Role of Integrating Artificial Intelligence and Virtual Simulation Technologies in Physics Teaching. Advances in Education, Humanities and Social Science Research, 6(1), 572. https://doi.org/10.56028/aehssr.6.1.572.2023
Kajbaf, H., & Fazayeli, F. (2021). Physics-Based Artificial Intelligence Integrated Simulation and Measurement Platform. In US Patent App. 17/112,523. Google Patents. https://patents.google.com/patent/US20210173011A1/en
Keim, D., Kohlhammer, J., May, T., & Thomas, J. (2006). Event Summary of the Workshop on Visual Analytics. Computers & Graphics, 30(2). https://doi.org/10.1016/j.cag.2006.01.003
Kortemeyer, G. (2023). Could an artificial-intelligence agent pass an introductory physics course? Physical Review Physics Education Research. https://doi.org/10.1103/PhysRevPhysEducRes.19.010132
Labadze, L., Grigolia, M., & Machaidze, L. (2023). Role of AI chatbots in education: systematic literature review. In International Journal of Educational Technology in Higher Education (Vol. 20, Issue 1). https://doi.org/10.1186/s41239-023-00426-1
Liao, J., Yang, J., & Zhang, W. (2021). The student-centered STEM learning model based on artificial intelligence project: A case study on intelligent car. International Journal of Emerging Technologies in Learning (IJET), 16(21), 100. https://doi.org/10.3991/ijet.v16i21.25001
Lindner, A., & Romeike, R. (2019). Teachers’ perspectives on artificial intelligence. 12th International Conference on Informatics in Schools,“Situation, Evaluation and Perspectives”, ISSEP, January. file:///Users/nurulaulia/Downloads/Teachers_Perspectives_on_Artificial_Intelligence_ISSEP.pdf
Luhgiatno, L., Kumala, D., Wardhana, A., Prasetya, P., Lukiastuti, F., Lustono, L., Yulianti, M. L., Djou, L. D. G., Susant, A., Sriharyati, S., Susila, M. R., Ginting, M. L., Irdhayanti, E., Ana Fitriyatul Bilgies, & Hardiwinoto, H. (2024). Metode penelitian manajemen. In A. S. Egim (Ed.), Eureka Media Aksara. Eureka Media Aksara.
Mahligawati, F., Allanas, E., Butarbutar, M. H., & ... (2023). Artificial intelligence in Physics Education: a comprehensive literature review. Journal of Physics …. https://doi.org/10.1088/1742-6596/2596/1/012080
Mantelero, A. (2018). AI and Big Data: A blueprint for a human rights, social and ethical impact assessment. Computer Law & Security Review, 34(4), 754–772. https://doi.org/10.1016/j.clsr.2018.05.017
Nasri, N. M., Nasri, N., Nasri, N. F., & Talib, M. A. A. (2023). The impact of integrating an Intelligent Personal Assistant (IPA) on secondary school physics students’ scientific inquiry skills. IEEE Transactions on Learning Technologies, 16(2), 232–242. https://doi.org/10.1109/TLT.2023.3241058
Nguyen, T. T. K., Thuan, H. T., & Nguyen, M. T. (2023). Artificial Intelligent (AI) in teaching and learning: A comprehensive review. ISTES BOOKS, 140–161.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, n71. https://doi.org/10.1136/bmj.n71
Pandey, S., & Sahoo, S. (2020). Research collaboration and authorship pattern in the field of semantic digital libraries. DESIDOC Journal of Library and Information Technology, 40(6), 375–381. https://doi.org/10.14429/djlit.40.6.15680
Popkova, E. G., & Sergi, B. S. (2020). Human capital and AI in industry 4.0. convergence and divergence in social entrepreneurship in Russia. Journal of Intellectual Capital, 21(4), 565–581. https://doi.org/10.1108/JIC-09-2019-0224
Prahani, B. K., Rizki, I. A., Jatmiko, B., Suprapto, N., & Tan, A. (2022). Artificial intelligence in education research during the last ten years: A review and bibliometric study. International Journal of Emerging Technologies in Learning (IJET), 17(08), 169–188. https://doi.org/10.3991/ijet.v17i08.29833
Ramos, M. G., Carvalho, P. R., & Souza, R. F. de. (2022). Knowledge Organization System and Post-Disciplinarity Climate Change and COVID-19 in the context of the 2030 Agenda. Prisma.Com, 47, 19–33. https://doi.org/10.21747/16463153/47a2
Ribeiro, J., Lima, R., Eckhardt, T., & Paiva, S. (2021). Robotic process automation and artificial intelligence in industry 4.0 – A literature review. Procedia Computer Science, 181, 51–58. https://doi.org/10.1016/j.procs.2021.01.104
Roshanaei, M., Olivares, H., & Lopez, R. R. (2023). Harnessing AI to foster equity in education: Opportunities, challenges, and emerging strategies. Journal of Intelligent Learning Systems and Applications, 15(04), 123–143. https://doi.org/10.4236/jilsa.2023.154009
Selvarani, S., Ganeshan, M. K., Vethirajan, C., Kumar, A., & Arumugam, U. (2023). Artificial intelligence and machine learning in smart manusfacturing in industry 4.0. International Journal of Research Publication and Reviews, 4(11), 2053–2058.
Shamina, S. V, Munister, V. D., Zolkin, A. L., Verbitskiy, R. A., & Dragulenko, V. V. (2021). Application of artificial intelligence and digital technologies in the organization of the educational process of specialists in the field of physics, engineering and metrology. In A. Y.A., O. A.A., O. V.V., K. I.V., & V. A.A. (Eds.), Journal of Physics: Conference Series (Vol. 1889, Issue 2). IOP Publishing Ltd. https://doi.org/10.1088/1742-6596/1889/2/022015
Shi, S. J., Li, J. W., & Zhang, R. (2024). A study on the impact of generative artificial intelligence supported situational interactive teaching on students’ ‘flow’ experience and learning effectiveness — a case study of legal education in China. Asia Pacific Journal of Education, 44(1), 112–138. https://doi.org/10.1080/02188791.2024.2305161
Siddique, N., & Adeli, H. (2015). Nature inspired computing: An overview and some future directions. Cognitive Computation, 7(6), 706–714. https://doi.org/10.1007/s12559-015-9370-8
Singh, M. K. (2017). Authorship and collaboration pattern in biotechnology research: A study of IBSA countries. Library Philosophy & Practice.
Strom, B. (2019). “AI” PHYSICS-Atomic Structure-Part 2. Vixra. https://www.facebook.com/brian.strom.750blog:https://edisconstant.wordpress.com/
Tschisgale, P., Wulff, P., & Kubsch, M. (2023). Integrating artificial intelligence-based methods into qualitative research in physics education research: A case for computational grounded theory. Physical Review Physics Education Research, 19(2), 020123. https://doi.org/10.1103/PhysRevPhysEducRes.19.020123
Tseng, Y.-H., & Tsay, M.-Y. (2013). Journal clustering of library and information science for subfield delineation using the bibliometric analysis toolkit: CATAR. Scientometrics, 95(2), 503–528. https://doi.org/10.1007/s11192-013-0964-1
Tupan, T., Rahayu, R. N., Rachmawati, R., & Rahayu, E. S. R. (2018). Analisis bibliometrik perkembangan penelitian bidang ilmu instrumentasi. Baca: Jurnal Dokumentasi Dan Informasi, 39(2), 135. https://doi.org/10.14203/j.baca.v39i2.413
van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., Treacy, D., Weinstein, A., & Wintersgill, M. (2004). The andes physics tutoring system: Lessons learned. In International Journal of Artificial Intelligence in Education.
Vliegen, R., Van Wijk, J. J., & Van Der Linden, E. J. (2006). Visualizing business data with generalized treemaps. IEEE Transactions on Visualization and Computer Graphics, 12(5). https://doi.org/10.1109/TVCG.2006.200
Vochozka, V. (2024). Analysis of the difficulty of text generated by the ChatGPT artificial intelligence, text from a lower-secondary physics textbook, and other sources in Czech language. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/2715/1/012002
Wang, L., Shoulin, Y., Alyami, H., Laghari, A. A., Rashid, M., Almotiri, J., Alyamani, H. J., & Alturise, F. (2022). A novel deep learning-based single shot multibox detector model for object detection in optical remote sensing images. Geoscience Data Journal. https://doi.org/10.1002/gdj3.162
Wink, R., & Bonivento, W. M. (2023). Artificial intelligence: New challenges and opportunities in physics education. In New Challenges and Opportunities in Physics Education (pp. 427–434). Springer. https://doi.org/10.1007/978-3-031-37387-9_27
Yang, S. J. H., Ogata, H., Matsui, T., & Chen, N.-S. (2021). Human-centered artificial intelligence in education: Seeing the invisible through the visible. Computers and Education: Artificial Intelligence, 2, 100008. https://doi.org/10.1016/j.caeai.2021.100008
Zawacki-Richter, O., & Latchem, C. (2018). Exploring four decades of research in Computers & Education. Computers and Education, 122. https://doi.org/10.1016/j.compedu.2018.04.001
Zhang, Y., & Kim, E.-A. (2017). Quantum loop topography for machine learning. Physical Review Letters, 118(21), 216401. https://doi.org/10.1103/PhysRevLett.118.216401
Zhang, Y., Lau, R. Y. K., David Xu, J., Rao, Y., & Li, Y. (2024). Business chatbots with deep learning technologies: state-of-the-art, taxonomies, and future research directions. Artificial Intelligence Review, 57(5). https://doi.org/10.1007/s10462-024-10744-z
Zhang, Z., Lin, C., & Wang, B. (2024). Physics-informed shape optimization using coordinate projection. Scientific Reports, 14(1), 6537. https://doi.org/10.1038/s41598-024-57137-4
DOI: https://doi.org/10.26618/jpf.v12i2.14745
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Jurnal Pendidikan Fisika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Pendidikan Fisika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.