Artificial Intelligence in Physics Education Research in Two Decades: A Bibliometric Study from Scopus Database
Abstract
There has been a substantial rise in research on utilizing Artificial Intelligence (AI) technology in physics education. This study conducts a comprehensive bibliometric analysis of this emerging field, aiming to discern trends, patterns, and future research areas. Using the PRISMA methodology, data were extracted from the Google Scholar and Scopus databases and analyzed with Biblioshiny and VOSviewer. We identified 12 main topic clusters, including chatbot applications and 3D virtual simulations, with significant growth in publications from 2020 to 2023. Key findings focused on pre-trained language models like ChatGPT, revealing strong connections between ChatGPT and topics such as linguistic quality and student perception. Future research areas can include thorough evaluations of AI models' accuracy and quality across various physics topics and educational levels, developing fair and transparent AI-driven assessment systems, and exploring blended learning approaches integrating AI-powered simulations. Encouraging interdisciplinary collaborations and conducting longitudinal studies to assess the long-term impact of AI on learning outcomes are also crucial. The use of Google Scholar and Scopus databases limits our research. Future research could benefit from incorporating other databases, such as Web of Science (WoS), and conducting a systematic literature review for a more nuanced understanding.
Keywords
Full Text:
PDFReferences
Adams, J. (2013). Collaborations: The fourth age of research. Nature, 497, 557-560. https://doi.org/10.1038/497557a
Al Ka’bi, A. (2023). Proposed artificial intelligence algorithm and deep learning techniques for development of higher education. International Journal of Intelligent Networks, 4, 68–73. https://doi.org/10.1016/j.ijin.2023.03.002
Aleedy, M., Atwell, E., & Meshoul, S. (2022). Using AI chatbots in education: Recent advances challenges and use case. Artificial Intelligence and Sustainable Computing, 661-675. https://doi.org/10.1007/978-981-19-1653-3_50
Ali, A. S. A., Jazaei, F., Clement, T. P., & Waldron, B. (2024). Physics-informed neural networks in groundwater flow modeling: Advantages and future directions. Groundwater for Sustainable Development, 25, 101172. https://doi.org/10.1016/j.gsd.2024.101172
Amiruddin, M. Z. B., Samsudin, A., Suhandi, A., Sari, E. P. D. N., & Arrafi, W. Q. L. (2023). The potential of Artificial Intelligence (AI) in the field of education and physics learning: A literature review. Proceedings of the 4rd UIN Imam Bonjol International Conference on Islamic Education, 432–444.
Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Baharuddin, R. A., Hashim, N. M., & Malek, J. A. (2020). Bibliometric analysis of knowledge and awareness toward climate change from 2010 to 2019. Proceeding RSU International Research Conference 2020, 1577–1589. https://doi.org/https://doi.org/10.14458/RSU.res.2020.46
Bitzenbauer, P. (2021). Quantum Physics Education Research over the Last Two Decades: A Bibliometric Analysis. Education Science, 11(11), 1-20. https://doi.org/10.3390/educsci11110699
Bornmann, L., & Daniel, H.-D. (2008). What do citation counts measure? A review of studies on citing behavior. Journal of documentation, 64(1), 45-80.
Bornmann, L., & Mutz, R. (2015). Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. Journal of the Association for Information Science and Technology, 66(11), 2215-2222. https://doi.org/10.1002/asi.23329
Campbell, J., Ansell, K., & Stelzer, T. (2024). Evaluating IBM’s Watson natural language processing artificial intelligence as a short-answer categorization tool for physics education research. Physical Review Physics Education Research, 20, 1-18. https://doi.org/10.1103/PhysRevPhysEducRes.20.010116
Chiu, T. K. F., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, 4, 1-15. https://doi.org/10.1016/j.caeai.2022.100118
Church, W., Ford, T., Perova, N., & Rogers, C. (2010). Physics with robotics: Using Lego® Mindstorms® in high school education. Proceeding Conference: Educational Robotics and Beyond, 1-3.
Corrin, L., Thompson, K., Hwang, G. J., & Lodge, J. M. (2022). The importance of choosing the right keywords for educational technology publications. Australasian Journal of Educational Technology, 38(2), 1-8. https://doi.org/10.14742/ajet.8087
Dahlkemper, M. N., Lahme, S. Z., & Klein, P. (2023). How do physics students evaluate artificial intelligence responses on comprehension questions? A study on the perceived scientific accuracy and linguistic quality of ChatGPT. Physical Review Physics Education Research, 19, 1-25. https://doi.org/10.1103/PhysRevPhysEducRes.19.010142
Dai, K., & Wang, L.-F. (2021). Research of effective structural engineering course teaching based on artificial intelligence. Proceedings in 2nd International Conference on Information Science and Education, 1398–1401. https://doi.org/10.1109/ICISE-IE53922.2021.00312
Datcu, M., Huang, Z., Anghel, A., Zhao, J., & Cacoveanu, R. (2023). Explainable, physics-aware, trustworthy artificial intelligence: A paradigm shift for synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 11(1), 8–25. https://doi.org/10.48550/arXiv.2301.03589
Dong, S., & Chen, H. (2024). Artificial intelligence and IoT based optical quantum computing application legal implications in privacy and regulatory analysis. Optical and Quantum Electronics, 56(4), 556. https://doi.org/10.1007/s11082-023-06161-1
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
Dunjko, V., & Briegel, H. J. (2018). Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Reports on Progress in Physics, 81(7), 1-67. https://doi.org/10.1088/1361-6633/aab406
Eden, C. A., Adeleye O. O., & Adeniyi, I. S. (2024). A review of AI-driven pedagogical strategies for equitable access to science education. Magna Scientia Advanced Research and Reviews, 10(2). 44-54. https://doi.org/10.30574/msarr.2024.10.2.0043
Ellegaard, O., & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact? Scientometrics, 105, 1809–1831. https://doi.org/10.1007/s11192-015-1645-z
Faroughi, S. A., Pawar, N. M., Fernandes, C., Raissi, M., Das, S., Kalantari, N. K., & Kourosh Mahjour, S. (2024). Physics-guided, physics-informed, and physics-encoded neural networks and operators in scientific computing: Fluid and solid mechanics. Journal of Computing and Information Science in Engineering, 24(4), 1-31. https://doi.org/10.1115/1.4064449
Garfield, E. (2006). The history and meaning of the journal impact factor. JAMA, 295(1), 90-93. https://doi.org/10.1001/jama.295.1.90
Ge, X., Yin, Y., & Feng, S. (2018). Application research of computer artificial intelligence in college student sports autonomous learning. Educational Sciences: Theory & Practice, 18(5), 2143–2154. Doi. 10.12738/estp.2018.5.114
Ghalambaz, S., Abbaszadeh, M., Sadrehaghighi, I., Younis, O., Ghalambaz, M., & Ghalambaz, M. (2024). A forty years scientometric investigation of artificial intelligence for fluid-flow and heat-transfer (AIFH) during 1982 and 2022. Engineering Applications of Artificial Intelligence, 127, 107334. https://doi.org/10.1016/j.engappai.2023.107334
Ghosh, A., Chakraborty, D., & Law, A. (2018). Artificial intelligence in internet of things. CAAI Transactions on Intelligence Technology, 3(4), 208–218. https://doi.org/10.1049/trit.2018.1008
Glanzel, W., & Schubert, A. (2005). Analyzing scientific networks through co-authorship. Handbook Of Quantitative Science And Technology research, 257-276. Springer. https://doi.org/10.1007/1-4020-2755-9_12
Glänzel, W., & Schubert, A. (2006). Analysing Scientific Networks Through Co-Authorship. Handbook of Quantitative Science and Technology Research, 257-276. https://doi.org/10.1007/1-4020-2755-9_12
Gurcan, F., Ozyurt, O., & Cagiltay, N. E. (2021). Investigation of emerging trends in the e-learning field using latent dirichlet allocation. The International Review of Research in Open and Distributed Learning, 22(2), 1-18. https://doi.org/10.19173/irrodl.v22i2.5358
Han, B. (2019). Application of artificial intelligence in autonomous English learning among college students. International Journal of Emerging Technologies in Learning, 14(6), 63–74. https://doi.org/10.3991/ijet.v14i06.10157
Hidayatullah, Z., Wilujeng, I., Nurhasanah, N., Gusemanto, T. G., & Makhrus, M. (2021). Synthesis of the 21st Century Skills (4C) Based Physics Education Research In Indonesia. JIPF (Jurnal Ilmu Pendidikan Fisika), 6(1), 88-97. https://doi.org/10.26737/jipf.v6i1.1889
Hsieh, Y.-L., & Yeh, S.-C. (2024). The trends of major issues connecting climate change and the sustainable development goals. Discover Sustainability, 5(1), 1-20. https://doi.org/10.1007/s43621-024-00183-9
Ibrahim, W. M. R. W., & Hassan, R. (2019). Recruitment trends in the era of industry 4.0 using artificial intelligence: Pro and cons. Asian Journal of Research in Business and Management, 1(1), 16–21.
Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31, 685-695. https://doi.org/10.1007/s12525-021-00475-2
Jing, Y., & Ouyang, F. (2023). The role of integrating artificial intelligence and virtual simulation technologies in physics teaching. Proceeding Advances in Education, Humanities and Social Science Research, 572-577.
Jho, H. (2020). Discussion for how to apply artificial intelligence to physics education. New Physics: Sae Mulli, 70(11), 974-984. https://doi.org/10.3938/NPSM.70.974
Kajbaf, H. and Fazayeli, F. (2021). Physics-based artificial intelligence integrated simulation and measurement platform. United States Patent Application Publication, 1-21.
Keim, D., Kohlhammer, J., May, T., & Thomas, J. (2006). Event summary of the workshop on visual analytics: June 4, 2005, Darmstadt GermanyJointly organized by University of Konstanz and Fraunhofer IGD. Computers & Graphics, 30(2), 284-286. https://doi.org/10.1016/j.cag.2006.01.003
Kortemeyer, G. (2023). Could an artificial-intelligence agent pass an introductory physics course?. Physical Review Physics Education Research, 19,1-18. https://doi.org/10.1103/PhysRevPhysEducRes.19.010132
Labadze, L., Grigolia, M., & Machaidze, L. (2023). Role of AI chatbots in education: Systematic literature review. International Journal of Educational Technology in Higher Education, 20(1) 1-17. https://doi.org/10.1186/s41239-023-00426-1
Laureano, D. M., Crus-Romero, D. L., Ovalle, C. (2022). Virtual assistant based on Artificial Intelligence as a Thesis tool for university students in the Engineering career. Proceedings of the LACCEI International Multi-conference for Engineering, Education and Technology, 1-10. https://doi.org/10.18687/LACCEI2022.1.1.163
Liao, J., Yang, J., & Zhang, W. (2021). The student-centered STEM learning model based on artificial intelligence project: A case study on intelligent car. International Journal of Emerging Technologies in Learning (IJET), 16(21), 100-120. https://doi.org/10.3991/ijet.v16i21.25001
Lindner, A., & Romeike, R. (2019). Teachers’ perspectives on artificial intelligence. Proceeding in 12th International Conference on Informatics in Schools,“Situation, Evaluation and Perspectives, 22-29.
Luhgiatno, L., Kumala, D., Wardhana, A., Prasetya, P., Lukiastuti, F., Lustono, L., Yulianti, M. L., Djou, L. D. G., Susanti, A., Sriharyati, S., Susila, M. R., Ginting, M. L., Irdhayanti, E., Bilgies, A. F., & Hardiwinoto, H. (2024). Metode penelitian manajemen. Eureka Media Aksara.
Mahligawati, F., Allanas, E., Butarbutar, M. H., & Nordin, N. A. N. (2023). Artificial intelligence in physics education: A comprehensive literature review. Journal of Physics: Conference Series, 2596, 1-6. https://doi.org/10.1088/1742-6596/2596/1/012080
Mantelero, A. (2018). AI and Big Data: A blueprint for a human rights, social and ethical impact assessment. Computer Law & Security Review, 34(4), 754–772. https://doi.org/10.1016/j.clsr.2018.05.017
Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences of the United States of America, 98, (2), 404-409. https://doi.org/10.1073/pnas.98.2.404
Nguyen, T. T. K., Thuan, H. T., & Nguyen, M. T. (2023). Artificial Intelligent (AI) in teaching and learning: A comprehensive review. ISTES BOOKS, 140–161.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Research Method and Reporting, 372 (71), 1-9. https://doi.org/10.1136/bmj.n71
Pandey, S., & Sahoo, S. (2020). Research collaboration and authorship pattern in the field of semantic digital libraries. DESIDOC Journal of Library and Information Technology, 40(6), 375–381. Doi. 10.14429/djlit.40.6.15680
Popkova, E. G., & Sergi, B. S. (2020). Human capital and AI in industry 4.0. convergence and divergence in social entrepreneurship in Russia. Journal of Intellectual Capital, 21(4), 565–581. https://doi.org/10.1108/JIC-09-2019-0224
Prahani, B. K., Rizki, I. A., Jatmiko, B., Suprapto, N., & Amelia, T. (2022). Artificial intelligence in education research during the last ten years: A review and bibliometric study. International Journal of Emerging Technologies in Learning (IJET), 17(08), 169–188. https://doi.org/10.3991/ijet.v17i08.29833
Rahim, F. R., & Widodo, A. (2024). Computational mapping analysis of artificial intelligence in education publications: A bibliometric approach utilizing vosviewer. Momentum: Physics Education Journal, 8(2), 304–317. https://doi.org/10.21067/mpej.v8i2.9774
Ribeiro, J., Lima, R., Eckhardt, T., & Paiva, S. (2021). Robotic process automation and artificial intelligence in industry 4.0 – A literature review. Procedia Computer Science, 181, 51–58. https://doi.org/10.1016/j.procs.2021.01.104
Ronsumbre, S., Rukmawati, T., Sumarsono, A., & Waremra, R. S. (2023). Pembelajaran digital dengan kecerdasan buatan (AI): Korelasi AI terhadap motivasi belajar siswa. Jurnal Educatio FKIP UNMA, 9(3), 1464–1474. https://doi.org/10.31949/educatio.v9i3.5761
Roshanaei, M., Olivares, H., & Lopez, R. R. (2023). Harnessing AI to foster equity in education: Opportunities, challenges, and emerging strategies. Journal of Intelligent Learning Systems and Applications, 15(4), 123–143. https://doi.org/10.4236/jilsa.2023.154009
Russell, S., & Norivg, P. (2021). Artificial intelligence: A modern approach. Fourt edition (global edition). Pearson Education.
Salazar, L. R., Peeples, S. F., & Brooks, M. E. (2024). Generative AI ethical considerations and discriminatory biases on diverse students within the classroom. The Role of Generative AI in the Communication Classroom, 1-41, IGI Global. https://doi.org/10.4018/979-8-3693-0831-8.ch010
Selvarani, S., Ganeshan, M. K., Vethirajan, C., Kumar, A., & Arumugam, U. (2023). Artificial intelligence and machine learning in smart manusfacturing in industry 4.0. International Journal of Research Publication and Reviews, 4(11), 2053–2058.
Shafie, S. M., Nu’man, A. H., & Yusuf, N. N. A. N. (2021). Strategy in energy efficiency management: University campus. International Journal of Energy Economics and Policy, 11(5), 310-313. https://doi.org/10.32479/ijeep.11265
Shamina, S. V., Munister, V. D., Zolkin, A. L., Verbitskiy, R. A., & Dragulenko. (2021). Application of artificial intelligence and digital technologies in the organization of the educational process of specialists in the field of physics, engineering and metrology. Journal of Physics: Conference Series, 1889, 1-7. Doi. 10.1088/1742-6596/1889/2/022015
Shi, S. J., Li, J. W., & Zhang, R. (2024). A study on the impact of generative artificial intelligence supported situational interactive teaching on students’ ‘flow’ experience and learning effectiveness — a case study of legal education in China. Asia Pacific Journal of Education, 44(1), 112–138. https://doi.org/10.1080/02188791.2024.2305161
Siddique, N., & Adeli, H. (2015). Nature inspired computing: An overview and some future directions. Cognitive Computation, 7(6), 706–714. https://doi.org/10.1007/s12559-015-9370-8
Siemens, G. (2013). Learning analytics: the emergence of a discipline. American Behavioral Scientist, 57(10), 1380-1400. https://doi.org/10.1177/0002764213498851
Singh, M. K. (2017). Authorship and collaboration pattern in biotechnology research: A study of IBSA countries. Library Philosophy & Practice.
Susilo, M. J., Sulisworo, D., & Beungacha, S. (2023). Technology and its impact on education. Buletin Edukasi Indonesia, 2(2), 47-54. https://doi.org/10.56741/bei.v2i02.285
Tschisgale, P., Wulff, P., & Kubsch, M. (2023). Integrating artificial intelligence-based methods into qualitative research in physics education research: A case for computational grounded theory. Physical Review Physics Education Research, 19, 1-24. https://doi.org/10.1103/PhysRevPhysEducRes.19.020123
Tupan, T., Rahayu, R. N., Rachmawati, R., & Rahayu, E. S. R. (2018). Analisis bibliometrik perkembangan penelitian bidang ilmu instrumentasi. Baca: Jurnal Dokumentasi Dan Informasi, 39(2), 135-149. https://doi.org/10.14203/j.baca.v39i2.413
Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84, 523–538. https://doi.org/10.1007/s11192-009-0146-3
VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, K., Treacy, D., Weinstein, A., & Wintersgill, M. (2004). The andes physics tutoring system: Lessons learned. International Journal of Artificial Intelligence in Education, 15, 1-58.
Vliegen, R., Van Wijk, J. J., & Van Der Linden, E. J. (2006). Visualizing business data with generalized treemaps. IEEE Transactions on Visualization and Computer Graphics, 12(5), 789-796. https://doi.org/10.1109/TVCG.2006.200
Vochozka, V. (2024). Analysis of the difficulty of text generated by the ChatGPT artificial intelligence, text from a lower-secondary physics textbook, and other sources in Czech language. Journal of Physics: Conference Series, 2715, 1-8. https://doi.org/10.1088/1742-6596/2715/1/012002
Wang, L., Shoulin, Y., Alyami, H., Laghari, A. A., Rashid, M., Almotiri, J., Alyamani, H. J., & Alturise, F. (2022). A novel deep learning-based single shot multibox detector model for object detection in optical remote sensing images. Geoscience Data Journal, 11(3), 237-251. https://doi.org/10.1002/gdj3.162
Wink, R., & Bonivento, W. M. (2023). Artificial intelligence: New challenges and opportunities in physics education. New Challenges and Opportunities in Physics Education, 427–434. Springer. https://doi.org/10.1007/978-3-031-37387-9_27
Winkler, R., & Soellner, M. (2018). Unleashing the Potential of Chatbots in Education: A State-Of-The-Art Analysis. Academy of Management Proceedings, 1-40. https://doi.org/10.5465/ambpp.2018.15903abstract
Yang, S. J. H., Ogata, H., Matsui, T., & Chen, N.-S. (2021). Human-centered artificial intelligence in education: Seeing the invisible through the visible. Computers and Education: Artificial Intelligence, 2, 1-5. https://doi.org/10.1016/j.caeai.2021.100008
Zawacki-Richter, O., & Latchem, C. (2018). Exploring four decades of research in Computers & Education. Computers and Education, 122, 136-152. https://doi.org/10.1016/j.compedu.2018.04.001
Zebua, R. S. Y., Khairunnisa, K., Hartatik, H., Pariyadi, P., Wahyuningtyas, D. P., Thantawi, A. M., Sudipa, I. G. I., Prayitno, H., Sumakul, G. C., Sepriano, S., & Kharisma, L. P. I. (2023). Fenomena Artificial Intelligence (AI). PT. Sonpedia Publishing Indonesia.
Zhai, C., Wibowo, S., & Li, L. D. (2024). The effects of over-reliance on AI dialogue systems on students’ cognitive abilities: a systematic review. Smart Learning Environments, 11(1), 1-37. https://doi.org/10.1186/s40561-024-00316-7
Zhang, Y., & Kim, E.-A. (2017). Quantum loop topography for machine learning. Physical Review Letters, 118, 1-5. https://doi.org/10.1103/PhysRevLett.118.216401
Zhang, Y., Lau, R. Y. K., Xu, J. D., Rao, Y., & Li, Y. (2024). Business chatbots with deep learning technologies: state-of-the-art, taxonomies, and future research directions. Artificial Intelligence Review, 57, 1-63. https://doi.org/10.1007/s10462-024-10744-z
Zhang, Z., Lin, C., & Wang, B. (2024). Physics-informed shape optimization using coordinate projection. Scientific Reports, 14, 1-12. https://doi.org/10.1038/s41598-024-57137-4
DOI: https://doi.org/10.26618/jpf.v12i2.14745
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Jurnal Pendidikan Fisika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Pendidikan Fisika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.