REGENERASI DENDRIT SEL GANGLION RETINA: PERAN INSULIN UNTUK MENGEMBALIKAN PENGLIHATAN PADA GLAUKOMA

Nurul Azizah, Sisca Sisca, Rasiha Rasiha

Abstract


Glaukoma is a leading cause of irreversible blindness worldwide. This disease is associated with characteristic damage to the optic nerve and permanent retinal ganglion cell (RGC) degeneration. A crucial step towards circuit repair in glaucoma is to promote damaged RGCs to regenerate not only axons, but also dendrites to successfully reconnect with their synaptic partners. The latest research showed that insulin signalling has the capacity to regenerate dendrites dan injured synapses, therefore the use of insulin raises a new paradigm as a new pro-regenerative therapeutic target for the disease of glaucoma. 

This literature review is made using literature searching of valid journals with inclusion and exclusion criteria. On the experiment of insulin’s effectivity, it is valued using 4 indicators; promote dendrite regeneration, restore synaptic density, rescue retinal function, robust neuronal survival. Based on in vivo experiment, insulin endowed with the ability to effectively restore dendritic morphology thus enhancing the function and survival of RGC through mTORC1 (mammalian target of rapamycin complex 1) and mTORC2 (mammalian target of rapamycin complex 2) signalling, this supports that that it can be promising therapeutic targets to counter progressive RGC neurodegeneration and vision loss in glaucoma.


Full Text:

PDF

References


Tham Y-CC, Li X, Wong TY, Quigley HA, Aung T, Ed F, Cheng CY (2014) Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040. A Systematic Review and Meta-Analysis. Ophthalmology 121:2081–2090. doi: 10.1016/j.ophtha.2014.05.013

Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262-267.

Quigley, 1458 H.A., 2011. Glaucoma. Lancet 377 (9774), 1367–1377.

Baltmr, A., Duggan, J., Nizari, S., Salt, T.E., Cordeiro, M.F., 2010. Neuroprotection in glaucoma—Is there a future role? Exp. Eye Res. 91 (5), 554–566.

Agostinone J, Alarcon-martinez L, Gamlin C, Yu W, Wong ROL, Polo A Di. Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury. 2018;

Wie 1608 rzbowska, J., Robaszkiewicz, J., Figurska, M., Stankiewicz, A., 2010.Fu 1609 ture possibilities in glaucoma therapy. Med. Sci. Monit. 16 (11),R 1610 A252–RA259.

Krupin, T., Liebmann, J.M., Greenfield, D.S., Ritch, R., Gardiner, S., 2011. A random-ized trial of brimonidine versus timolol in preserving visual function: results from 1301 the Low-Pressure Glaucoma Treatment Study. Am. J. Ophthalmol. 151 (4), 671–681.

Sarah Q. Progress in Neurobiology Towards axonal regeneration and neuroprotection in glaucoma : Rho kinase inhibitors as promising therapeutics. Prog Neurobiol [Internet]. Elsevier Ltd; 2015;1–15. Available from: http://dx.doi.org/10.1016/j.pneurobio.2015.06.002

Kweon JH, Kim S, Lee SB. The cellular basis of dendrite pathology in neurodegenerative diseases. BMB Reports 2017; 50: 5–11.

Ward, N.J., Ho, K.W., Lambert, W.S., Weitlauf, C., Calkins, D.J., 2014. Absence of transient receptor potential vanilloid-1 accelerates stress-induced axonopathy in the optic projection. J. Neurosci. 34, 3161–3170.

Masland, R.H., 2012. The neuronal organization of the retina. Neuron 76, 266–280.

Nickells, R.W., Howell, G.R., Soto, I., John, S.W.M., 2012. Under pressure: cellular and molecularresponses during glaucoma, a common neurodegeneration with axonopathy. Annu.Rev. Neurosci. 35, 153–179.

Morgan, J.E., 2012. Retina ganglion cell degeneration in glaucoma: an opportunity missed?A review. Clin. Experiment. Ophthalmol. 40, 364–368.

Agostinone J, Polo A Di. Retinal ganglion cell dendrite pathology and synapse loss : implications for glaucoma [Internet]. 1st ed. New Trends in Basic and Clinical Research of Glaucoma: A Neurodegenerative Disease of the Visual Sys. Elsevier B.V.; 1-18 p. Available from: http://dx.doi.org/10.1016/bs.pbr.2015.04.012

Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A. Insulin in the brain: sources, localization and functions. Mol Neurobiol 2013; 47: 145–71.

Athauda D, Foltynie T. Insulin resistance and Parkinson’s disease: a new target for disease modification? Prog Neurobiol 2016; 145–6: 98–120.

Song BJ, Aiello LP, Pasquale LR. Presence and risk factors for glaucoma in patients with diabetes. Curr Diab Rep 2016; 16: 124.

Bloom GS, Lazo JS, Norambuena A. Reduced brain insulin signaling: a seminal process in Alzheimer’s disease pathogenesis. Neuropharmacology 2017, in press. doi: 10.1016/j.neuropharm.2017.09.016.

Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell 2017; 168: 960–76.

Laplante M, Sabatini DM. Cell 2012; 149:274-293

Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptorindependent pathway that regulates the cytoskeleton. Current biology: CB. 2004; 14:1296–1302. [PubMed: 15268862]

Xuemin Wang, Christopher G Proud. (2016). mTORC2 is a tyrosine kinase. Cell Research , 26: 1-2.




DOI: https://doi.org/10.26618/aimj.v1i2.2758

Refbacks

  • There are currently no refbacks.


Copyright (c) 1970 Nurul Azizah, Sisca Sisca, Rasiha Rasiha

Creative Commons License
Al-Iqra Medical Journal: Jurnal Ilmiah Kedokteran under by Creative Commons Attribution-NoDerivatives 4.0 International License.