Enhancing Student Learning Outcomes through Quantum Teaching with Crossword Media in Civic Education
DOI: https://doi.org/10.26618/446tsy74
Quantum Teaching, Crossword Puzzle, Civic Education, Student Learning Outcomes, Active Learning
Abstract
This study addresses the pressing need to improve student engagement and learning outcomes in civic education through innovative pedagogical strategies. The research aimed to evaluate the effectiveness of integrating quantum teaching with crossword puzzle media in enhancing conceptual mastery and values-based learning among junior secondary school students. Employing a quantitative experimental design, the study involved a one-group pretest-posttest approach with 37 seventh-grade students, utilizing standardized tests and validated questionnaires to assess both cognitive achievement and affective responses. Statistical analysis revealed a significant increase in students’ post-intervention scores, with all participants reaching mastery and demonstrating greater enthusiasm, motivation, and participation. The findings highlight that the application of the TANDUR framework, reinforced by interactive media, creates a dynamic and inclusive learning environment that bridges the gap between knowledge acquisition and civic value internalization. The study concludes that quantum teaching with crossword puzzles substantially elevates both academic achievement and affective engagement in civic education. The novelty of this research lies in its empirical validation of a synergistic approach, combining holistic pedagogy with game-based media, which had not been systematically examined in previous studies. This work contributes to the advancement of educational practice by providing robust evidence for the adoption of active, student-centered, and values-oriented instructional models in contemporary classrooms.
References
Bouchée, T., Thurlings, M., De Putter, L., & Pepin, B. (2023). Investigating teachers’ and students’ experiences of quantum physics lessons: Opportunities and challenges. Research in Science and Technological Education, 41(2), 777–799. https://doi.org/10.1080/02635143.2021.1948826
Bitzenbauer, P. (2021). Quantum physics education research over the last two decades: A bibliometric analysis. Education Sciences, 11(11), 1–21. https://doi.org/10.3390/educsci11110699
Bitzenbauer, P. (2021). Practitioners’ views on new teaching material for introducing quantum optics in secondary schools. Physics Education, 56(5). https://doi.org/10.1088/1361-6552/ac0809
Bitzenbauer, P., & Ubben, M. S. (2025). The structure of learners’ perceptions of models (not only) in quantum physics: Spotlight on fidelity of gestalt and functional fidelity. EPJ Quantum Technology, 12(1). https://doi.org/10.1140/epjqt/s40507-025-00316-7
Chiofalo, M., Foti, C., Michelini, M., Santi, L., & Stefanel, A. (2022). Games for teaching/learning quantum mechanics: A pilot study with high-school students. Education Sciences, 12(7), 446. https://doi.org/10.3390/educsci12070446
Ensari, Ö., Bayrak, C., & Aykutlu, I. (2025). Using 5E learning model enriched with simulation, POE, and comics in teaching introductory quantum physics. International Journal of Science Education. https://doi.org/10.1080/09500693.2025.2523570
Ghozali, I. (2018). Aplikasi Analisis Multivariate dengan Program IBM SPSS 25 (9th ed.). Semarang: Badan Penerbit Universitas Diponegoro.
Handoyo, B., Ridha, S., & Tan, G. C. I. (2024). Effect of the spatial based learning using quantum geographic information system on students’ critical thinking skills. Journal of Social Studies Education Research, 15(5), 328–379. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85214362752&partnerID=40&md5=f9d25dbec30cef416d0fdd576207a34d
Kelly, A. M., Wei, T.-C., Schneble, D., & Darienzo, M. (2025). Exploratory factor analysis of a precollege quantum information science and technology survey: Exploring career aspiration formation and student interest. EPJ Quantum Technology, 12(1). https://doi.org/10.1140/epjqt/s40507-025-00313-w
Khozaei, S. A., Valizadeh Zare, N. V., Moneghi, H. K., Sadeghi, T., & Taraghdar, M. M. (2022). Effects of quantum-learning and conventional teaching methods on learning achievement, motivation to learn, and retention among nursing students during critical care nursing education. Smart Learning Environments, 9(1), 20. https://doi.org/10.1186/s40561-022-00198-7
Kusmanto, H., & Wakhudin, W. (2023). Implementasi model quantum teaching untuk meningkatkan hasil belajar PKn materi bhinneka tunggal ika. Jurnal Pendidikan Kewarganegaraan, 13(1), 46–54. https://doi.org/10.15294/jpkn.v13i1.64638
Lubis, H. (2018). Analisis implementasi model quantum teaching dalam pembelajaran. Mukadimah: Jurnal Pendidikan, Sejarah, dan Ilmu-ilmu Sosial, 2(1), 57–61.
Li, Y., Chen, Y., & He, X. (2024). Teaching spin symmetry while learning neural network wave functions: Quantum chemistry. Nature Computational Science, 4(12), 884–885. https://doi.org/10.1038/s43588-024-00727-z
Lubis, R. (2018). Penerapan model quantum teaching untuk meningkatkan hasil belajar PPKn. Jurnal Ilmiah Pendidikan Pancasila dan Kewarganegaraan, 3(2), 53–61. https://doi.org/10.17977/um019v3i22018p053
Meyer, J. C., Passante, G., Pollock, S. J., & Wilcox, B. R. (2024). Introductory quantum information science coursework at US institutions: Content coverage. EPJ Quantum Technology, 11(1). https://doi.org/10.1140/epjqt/s40507-024-00226-0
Nahar, S. (2022). Improving students’ collaboration thinking skill under the implementation of the quantum teaching model. International Journal of Instruction, 15(3), 451–464. https://doi.org/10.29333/iji.2022.15325a
Nita, L., Mazzoli Smith, L., Chancellor, N., & Cramman, H. (2023). The challenge and opportunities of quantum literacy for future education and transdisciplinary problem-solving. Research in Science and Technological Education, 41(2), 564–580. https://doi.org/10.1080/02635143.2021.1920905
Nyirahabimana, P., Minani, E., Nduwingoma, M., & Kemeza, I. (2023a). Multimedia-aided technologies for effective learning of quantum physics at the university level. Journal of Science Education and Technology, 32(5), 686–696. https://doi.org/10.1007/s10956-023-10064-x
Nyirahabimana, P., Minani, E., Nduwingoma, M., & Kemeza, I. (2023b). Students’ perceptions of multimedia usage in teaching and learning quantum physics: Post-assessment. Journal of Baltic Science Education, 22(1), 37–56. https://doi.org/10.33225/jbse/23.22.37
Parhan, M., Arifin, Z., & Fadillah, M. (2023). Pengaruh penggunaan media teka-teki silang terhadap hasil belajar PPKn. Jurnal Pendidikan Kewarganegaraan, 13(2), 89–96. https://doi.org/10.15294/jpkn.v13i2.77748
Rodriguez, L. V., van der Veen, J. T., & de Jong, T. (2025). Role of analogies with classical physics in introductory quantum physics teaching. Physical Review Physics Education Research, 21(1), 010108. https://doi.org/10.1103/PhysRevPhysEducRes.21.010108
Said, I. (2022). Crossword puzzle as media in learning to improve students’ vocabulary mastery. Journal of Language Teaching and Research, 13(2), 280–286. https://doi.org/10.17507/jltr.1302.15
Siregar, S., Hidayat, T., & Rangkuti, Y. (2024). Penerapan model quantum teaching untuk meningkatkan hasil belajar PPKn di kelas VII. Jurnal Pendidikan Kewarganegaraan, 14(1), 1–13. https://doi.org/10.15294/jpkn.v14i1.86192
Vieira, H., & Morais, C. (2022). Musical analogies to teach middle school students topics of the quantum model of the atom. Journal of Chemical Education, 99(8), 2972–2980. https://doi.org/10.1021/acs.jchemed.2c00289
Xiao, L., Gill-Simmen, L., & Mehta, A. (2025). The quantum shift: Achieving education for sustainability development through a transformative teaching and learning approach. World Development Sustainability, 7, 100236. https://doi.org/10.1016/j.wds.2025.100236
Li, X., Muñiz, M., Chun, K., Tai, J., Guerra, F., & York, D. M. (2022). Inquiry-Based Activities and Games That Engage Students in Learning Atomic Orbitals. Journal of Chemical Education, 99(5), 2175–2181. https://doi.org/10.1021/acs.jchemed.1c01023
Rodriguez, L. V, van der Veen, J. T., Anjewierden, A., van den Berg, E., & de Jong, T. (2020). Designing inquiry-based learning environments for quantum physics education in secondary schools. Physics Education, 55(6). https://doi.org/10.1088/1361-6552/abb346
Nyirahabimana, P., Minani, E., Nduwingoma, M., & Kemeza, I. (2022). Prime indicators of current teaching methodologies and students’ perceptions in quantum physics. International Journal of Evaluation and Research in Education, 11(3), 1134–1142. https://doi.org/10.11591/ijere.v11i3.22078
Nyirahabimana, P., Minani, E., Nduwingoma, M., & Kemeza, I. (2022). Instructors and Students’ Practices and Behaviours during a Quantum Physics class at the University of Rwanda: Exploring the Usage of Multimedia. International Journal of Learning, Teaching and Educational Research, 21(9), 309–326. https://doi.org/10.26803/ijlter.21.9.18
Nyirahabimana, P., Minani, E., Nduwingoma, M., & Kemeza, I. (2023). STUDENTS’ PERCEPTIONS OF MULTIMEDIA USAGE IN TEACHING AND LEARNING QUANTUM PHYSICS: POST-ASSESSMENT. Journal of Baltic Science Education, 22(1), 37–56. https://doi.org/10.33225/jbse/23.22.37
Nyirahabimana, P., Minani, E., Nduwingoma, M., & Kemeza, I. (2023). Multimedia-Aided Technologies for Effective Learning of Quantum Physics at the University Level. Journal of Science Education and Technology, 32(5), 686–696. https://doi.org/10.1007/s10956-023-10064-x
Siregar, S. (2017). Metode penelitian kuantitatif: Dilengkapi dengan perbandingan perhitungan manual dan SPSS. Jakarta: Penerbit Kencana.
Hu, P., Li, Y., & Singh, C. (2024). Investigating and improving student understanding of the basics of quantum computing. Physical Review Physics Education Research, 20(2). https://doi.org/10.1103/PhysRevPhysEducRes.20.020108
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 JED (Jurnal Etika Demokrasi)

This work is licensed under a Creative Commons Attribution 4.0 International License.

