A Theoretical Study of Multicollinearity and Linearity in Econometric Models for Economic Research
Abstract
Multiple linear regression is a central analytical tool in econometric research used to model the relationship between a dependent variable and multiple independent variables. However, the accuracy and validity of such models are highly dependent on classical assumptions, particularly multicollinearity and linearity. Multicollinearity, characterized by high correlations among predictor variables, can inflate standard errors and obscure the true effects of individual variables. Linearity, meanwhile, ensures that the relationships between variables follow a straight-line pattern, which is essential for valid estimation and inference. This theoretical study aims to deepen the understanding of both assumptions, explore their causes, impacts, and identify methodological approaches for detection and correction. Employing a descriptive literature review method, the study synthesizes insights from contemporary econometric research to provide a conceptual framework for handling these issues. Key findings highlight that multicollinearity often arises from overlapping variables, small samples, and measurement errors, and can be addressed through variable elimination, transformation, or penalized regression techniques such as ridge and lasso regression. Linearity violations, frequently resulting from model misspecification or temporal dependencies, may be mitigated using data transformations, polynomial regression, or robust regression approaches. The study concludes that proper diagnostic tools and corrective strategies are essential for improving model reliability and enhancing the credibility of econometric findings in economic research.
Keywords
Full Text:
PDFReferences
Aditiya, N. Y., Evani, E. S., & Maghfiroh, S. (2023). The concept of classical assumption test on multiple linear regression. 2(2), 102-110.
Amelia, S., & Putra, A. A. (2023). Principal Component Regression in Overcoming Multicollinearity in Factors Affecting Local Revenue in West Sumatra. 7, 10906-10914.
Anam, C. (2020). Types of statistical tests for analysis of research results. Study, 23(4), 115-117.
Ani, N. (2023). The Effect of Digital Marketing, Electronic Word of Mouth and Lifestyle on Purchasing Decisions at Tiktok Shop Indonesia. BISMA: Business and Management Journal, 1(04), 37-44. https://doi.org/10.59966/bisma.v1i04.398
Arisandi, R., Ruhiat, D., & Marlina, E. (2021). Implementation of ridge regression to overcome multicollinearity symptoms in rainfall modelling based on climatological time series data. JRMST| Journal of Research ..., 1(November), 1-11. https://ejournal.unibba.ac.id/index.php/jrmst/article/view/735%0Ahttps://ejournal.unibba.ac.id/index.php/jrmst/article/download/735/666
Awalia, S., & Sihombing, W. L. (2022). The Effect of Time Token Type Cooperative Learning Model on Students' Motivation to Learn Mathematics on Triangle Material in Class Vii Mts. Amin Darussalam Tembung in the 2021/2022 academic year. Indonesian Multi Disciplinary Scientific Journal, 1(9), 1278-1285.
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
Budi, A. D. A. S., Septiana, L., & Mahendra, B. E. P. (2024). Understanding Classical Assumptions in Statistical Analysis: An In-depth Study of Multicollinearity, Heteroscedasticity, and Autocorrelation in Research. Multidisciplinary Journal of Western Science, 3(01), 01-11.
Çankaya, S., Eker, S., & Hasan, S. (2019). Comparison of Least Squares, Ridge Regression and Principal Components Approaches in the Presence of Multicollinearity in Regression Analysis. 7(8), 1166-1172.
CME. (2001). NoΔιαγνωστικές εξετάσεις για τον καρκίνο του ήπατος Title. 2017, 4(2), 1-11. http://www.helpa-prometheus.gr/διαγνωστικές-εξετάσεις-για-τον-καρκί/
Draper, N. R., & Smith, H. (1998). Applied Regression Analysis. New York: John Wiley & Sons.
Fox, J. (2015). Applied Regression Analysis and Generalized Linear Models. Thousand Oaks, CA: Sage Publications.
Ghozali, I. (2005). Application of Multivariate Analysis with the SPSS Program. Semarang: Diponegoro University Publishing Agency.
Ghozali, I. (2016). Multivariate Data Modeling. Semarang: Diponegoro University Publishing Agency.
Ghozali, I. (2021). Multivariate Statistics for Economics and Business. Semarang: Diponegoro University Publishing Agency.
Gujarati, D. N. (2015). Basic Econometrics. McGraw-Hill Education
Hasanah, N., Mutiasari, & Hartati, S. (2021). Analysis of Factors Affecting the Performance of Employees of the Secretariat of the Regional People's Representative Council (Dprd) of Cilacap Regency. AmaNU: Journal of Management and Economics, 4(1), 53-67.
Jampachaisri, K., & Tinochai, K. (2019). Parameter estimation methods in multiple linear regression analysis with intraclass correlation and heavy-tailed distributed data. Journal of Applied Science, 18(2), 11-21. https://doi.org/10.14416/j.appsci.2019.07.002
Kasemset, C., Sae-Haew, N., & Sopadang, A. (2014). Multiple regression model for forecasting off-season litchi supply quantity. Chiang Mai University Journal of Natural Sciences, 13(3), 391-402. https://doi.org/10.12982/cmujns.2014.0044
Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied Linear Statistical Models. New York: McGraw-Hill.
Lin, D., Foster, D. P., & Ungar, L. H. (n.d.). VIF Regression: A Fast Regression Algorithm for Big Data. 19104.
Marsuni, N. S., & Ridwan, A. (2024). Infrastructure Development and Its Socioeconomic Implications: A Study of Enrekang Regency. GoodWill Journal of Economics, Management, and Accounting, 4(1), 7-10.
Mardiatmoko, G. (2020). The Importance of the Classical Assumption Test in Multiple Linear Regression Analysis. BAREKENG: Journal of Mathematical and Applied Sciences, 14(3), 333-342. https://doi.org/10.30598/barekengvol14iss3pp333-342
Martaningtyas, N. U., Septiyaningrum, E. A., & Maulana, Z. (2024). The Impact of Classical Assumption Violation on Inference Error in Econometric Analysis. SYNERGY Multidisciplinary Scientific Journal, 1(4), 255-265. https://e-journal.naureendigition.com/index.php/sjim
Montgomery, D. C., & Runger, G. C. (2010). Applied Statistics and Probability for Engineers. New York: John Wiley & Sons.
Morrissey, M. B., & Ruxton, G. D. (2018). Multiple Regression Is Not Multiple Regressions: The Meaning of Multiple Regression and the Non-Problem of Collinearity. Philosophy, Theory, and Practice in Biology, 10(20220112). https://doi.org/10.3998/ptpbio.16039257.0010.003
Nastiti, E., Damayanti, T., & Madina, S. A. (2023). The Impact of Classical Assumption Violations on Econometric Model Estimation. Journal of Pijar Management and Business Studies, 1(3), 566-577. https://e-journal.naureendigition.com/index.php/pmb
Nurcahya, W. A., Arisanti, N. P., & Hanandhika, A. N. (2024). Application of the Classical Assumption Test to Detect Errors in Data as an Effort to Avoid Violations of Classical Assumptions. Madani: Multidisciplinary Scientific Journal, 1(12).
Nwaigwe, C. C., Uche, P., & Onuoha, C. (2004). A test for the parameters of multiple linear regression models. Global Journal of Mathematical Sciences, 3(2).https://doi.org/10.4314/gjmas.v3i2.21364
Rizky, M., Saputra, H., Ramadhan Basuki, R., & Muhtadin, I. A. (2024). Regression analysis on classical assumption violations in linear regression. Multidisciplinary Scientific Journal, 307(1), 307-314. https://doi.org/10.5281/zenodo.10537197
Rousseeuw, P. J., & Leroy, A. M. (1987). Robust Regression and Outlier Detection. John Wiley & Sons.
Saleh, S. (2020). ROBUST VARIABLE SELECTION IN LINEAR REGRESSION MODELS. January 2015. https://doi.org/10.13140/RG.2.2.10348.39044
Sebayang, J. S., & Yuniarto, B. (2017). Comparison of Artificial Neural Network Estimation Model Optimization Genetic Algorithm and Multiple Linear Regression. STATISTICS MEDIA, 10(1), 13. https://doi.org/10.14710/medstat.10.1.13-23
Setya Budi, A. D. A., Septiana, L., & Panji Mahendra, B. E. (2024). Understanding Classical Assumptions in Statistical Analysis: An In-depth Study of Multicollinearity, Heteroscedasticity, and Autocorrelation in Research. West Science Multidisciplinary Journal, 3(01), 01-11. https://doi.org/10.58812/jmws.v3i01.878
Sholihah, S. M. A., Aditiya, N. Y., Evani, E. S., & Maghfiroh, S. (2023). The Concept of Classical Assumption Test in Multiple Linear Regression. Soedirman Journal of Accounting Research, 2(2), 102-110.
Shrestha, N. (2020). Detecting Multicollinearity in Regression Analysis. American Journal of Applied Mathematics and Statistics, 8(2), 39-42. https://doi.org/10.12691/ajams-8-2-1
Sriningsih, M., Hatidja, D., & Prang, J. D. (2018). Multicollinearity Handling Using Principal Component Regression Analysis in the Case of Rice Imports in North Sulawesi Province. Scientific Journal of Science, 18(1), 18. https://doi.org/10.35799/jis.18.1.2018.19396
Subagyo, A. (2018). Economic statistical analysis techniques.
Supriyadi, E., Mariani, S., & Sugiman. (2017). Comparison of Partial Least Square (PLS) and Principal Component Regression (PCR) Methods to Overcome Multicollinearity in Multiple Linear Regression Models. Unnes Journal of Mathematics, 6(2), 117-128.
UT. (2021). Statistics and Research Methods.
Widana, W., & Muliani, P. L. (2020). Analysis Requirements Test Book. In Analysis of Minimum Service Standards at the Outpatient Installation at Semarang City Hospital.
Widarjono, A. (2010). Econometrics: Theory and Applications. Yogyakarta: UPP STIM YKPN.
Yaldi, E., Pasaribu, J. P. K., Suratno, E., Kadar, M., Gunardi, G., Naibaho, R., Hati, S. K., & Aryati, V. A. (2022). Application of Multicollinearity Test in Human Resource Management Research. Scientific Journal of Management and Entrepreneurship (JUMANAGE), 1(2), 94-102. https://doi.org/10.33998/jumanage.2022.1.2.89
DOI: https://doi.org/10.26618/jeb.v21i1.17031
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Jurnal Ekonomi Balance

This work is licensed under a Creative Commons Attribution 4.0 International License.