POTENSI KOMBINASI INDUCED PLURIPOTENT STEM CELL-DERIVED NEURAL PROGENITOR CELL (IPSC-NPC) DENGAN HIDROGEL CHONDROITIN SULFATE SCAFFOLDS YANG MEMEDIASI BASIC FIBROBLAST GROWTH FACTOR (BFGF) SEBAGAI INOVASI TERAPI TERBARU STROKE ISKEMIK

Sisca Sisca, Nurul Azizah, M. Salas Al Aldi

Abstract


Stroke iskemik adalah jenis stroke yang paling umum terjadi dan merupakan penyakit dengan angka kematian dan kecacatan tertinggi di dunia. Terapi yang ada saat ini dalam menangani stroke masih menyisakan tantangan bagi para peneliti karena belum ditemukannya perawatan yang dapat meregenerasi jaringan otak yang hilang akibat infark. Penggunaan Neural Progenitor Cell (NPC) turunan induced Pluripotent Stem Cell (iPSC) merupakan studi yang berada paling depan dalam tahapan uji praklinis karena diketahui dapat menjadi dan menggantikan neuron serta mempromosikan mekanisme pemulihan endogen seperti angiogenesis. Namun, terdapat hambatan dari penggunaan NPC utamanya pada patofisiologi stroke yang menyebabkan adanya resistensi terhadap terapi seluler. Oleh karena itu, diperlukan kombinasi NPC dengan Scaffold menggunakan Chondroitin sulfate-A (CS-A) berbasis hidrogel yang dapat meningkatkan aliran darah ke inti stroke serta meningkatkan afinitas neurotropik. Kombinasi ini menghasilkan sinergitas terapi yang sangat baik dengan efek utamanya dimediasi oleh basic Fibroblast Growth Factor (bFGF) yang akan memperbaiki kerusakan jaringan di daerah infark. Untuk mengetahui potensi kombinasi NPC dengan Hidrogel CS-A dalam pengobatan stroke iskemik. Literature Review ini disusun menggunakan metode studi pustaka dengan mengumpulkan jurnal yang valid berdasarkan kriteria inklusi dan eksklusi khusus. Kombinasi NPC dengan Hidrogel CS-A secara signifikan meningkatkan perbaikan vaskular, aliran darah kortikal dan hasil perilaku sensorimotor setelah stroke. Peningkatan yang terjadi dimediasi melalui stimulasi pengeluaran bFGF yang mendorong perbaikan jaringan. Efektivitas pemberian NPC secara signifikan dapat ditingkatkan dengan kombinasi Hidrogel CS-A dan telah terbukti dalam berbagai pengujian sehingga diharapkan dapat menjadi upaya terbaru dalam terapi stroke iskemik. 


Keywords


ischemic stroke, neural progenitor cell, chondroitin sulfate, basic Fibroblast Growth Factor

Full Text:

PDF

References


Yamashita, T., & Abe, K. Recent Progress in Therapeutic Strategies for Ischemic Stroke. Cell Transplantation. 2016, 25(5), 893–898.

World Stroke Organization. WSO global stroke fact sheet. 2019.

Balitbang Kemenkes RI. Riset Kesehatan Dasar; RISKESDAS. Jakarta: Balitbang Kemenkes RI. 2018.

Rohmatul, L. Hubungan Karakteristik Penderita Dan Hipertensi Dengan Kejadian Stroke Iskemik. Surabaya 2017.

Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart Disease and Stroke Statistic 2015 Update. Circulation. 2015;131(4):29–322.

Wallace, J. B. Researchers document troubling rise in strokes in young adults, starting at age 25. The Washington Post. 2016.

National Institute of Neurological Disorders and Stroke. Brain basics: Preventing stroke. 2016.

Xing, C., Arai, K., Lo, E. H., & Hommel, M. Pathophysiologic Cascades in Ischemic Stroke. International Journal of Stroke. 2012, 7(5), 378–385.

Susan A. Randolph. Ischemic Stroke. University of North Carolina at Chapel Hill. 2016.

Adeoye O, Hornung R, Khatri P, Kleindorfer D. Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years. Stroke. 2011; 42:1952-5.

Monica, C. Todd C. Deveau, et al. Transplantation of iPS cell-derived neural progenitors overexpressing SDF- 1α increases regeneration and functional recovery after ischemic stroke. Oncotarget, 2017, Vol. 8, No. 57, pp: 97537-97553.

McCrary, M. R., Jesson, K., Wei, Z. Z., Logun, M., Lenear, C., Tan, S., Wei, L. Cortical Transplantation of Brain‐Mimetic Glycosaminoglycan Scaffolds and Neural Progenitor Cells Promotes Vascular Regeneration and Functional Recovery after Ischemic Stroke in Mice. Advanced Healthcare Materials. 2020.

Vidya, I. Proliferasi dan Plastisitas Neuronal. Researchgate. Universitas Gadjah Mada. 2015.

Lazarov, O., Mattson, M.P., Peterson, D.A., Pimplikar, S.W., dan van Praag, H. When neurogenesis encounter aging and disease. Trends in Neurosciences. 2010, 13(12):569-579.

Wei, L., Wei, Z. Z., Jiang, M. Q., Mohamad, O., & Yu, S. P. (2017). Stemcell transplantation therapy for multifaceted therapeutic benefits after stroke. Progress in Neurobiology. 2017, 157, 49–78.

Zhong, J., Chan, A., Morad, L., Kornblum, H. I., Guoping Fan, & Carmichael, S T.Hydrogel Matrix to Support Stem Cell Survival After Brain Transplantation in Stroke. Neurorehabilitation and Neural Repair. 2010, 24(7), 636–644.

Nih, L. R., Carmichael, S. T., & Segura, T. Hydrogels for brain repair after stroke: an emerging treatment option. Current Opinion in Biotechnology. 2016, 40, 155–163.

Lohitash Karumbaiah, Syed Faaiz Enam, et al. Chondroitin Sulfate Glycosaminoglycan Hydrogels Create Endogenous Niches for Neural Stem Cells. Biocojugate Chemistry. 2015.

Jan, S. L., Hayashi, M., Kasza, Z., Eriksson, I., Bishop, J. R., Weibrecht, I., Kreuger, J. Functional Overlap Between Chondroitin and Heparan Sulfate Proteoglycans During VEGF- Induced Sprouting Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012. 32(5), 1255– 1263.

Chau, M., Deveau, T., Song, M., Gu, X., Cheng, D., Wei, L. IPS Cell Transplantation Increases Regeneration. Stem Cells. 2014.

Goel, A. Stem cell therapy in spinal cord injury: Hollow promise or promising science?. J Craniovert Jun Spine 2016;7:121-6.

Horie, N., Hiu, T., Nagata, I. Stem Cell Transplantation Enhances Endogenous Brain Repair after Experimental Stroke. Neurol Med Chir (Tokyo) 55 Suppl. 2015; 1:107–112.

Volpe, G., Bernstock, J. D., Peruzzotti- Jametti, L., Pluchino, S. Modulation of host immune responses following non- hematopoietic stem cell transplantation: Translational implications in progressive multiple sclerosis. J Neuroimmunol. 2016; (16):30312–5.

Yu, S. P., Wei, Z., Wei, L. Preconditioning strategy in stem cell transplantation therapy. Translational stroke research. 2013; 4:76–88.

Chau, M., Deveau, T. C., Song, M., Wei, Z. Z., Gu, X. Transplantation of iPS cell-derived neural progenitors overexpressing SDF-1 α increases regeneration and functional recovery after ischemic stroke. 2017;8(57):97537–53.

Francis, K. R., Wei, L. Human embryonic stem cell neural differentiation and enhanced cell survival promoted by hypoxic preconditioning. Cell Death Dis. 2010;1(2):e22.

Wei, N., Yu, S. P., Gu, X., Taylor, T. M., Song, D., Liu, X. F., Wei, L. Delayed intranasal delivery of hypoxic- preconditioned bone marrow mesenchymal stem cells enhanced cell homing and therapeutic benefits after ischemic stroke in mice. Cell Transplant. 2013;22(6):977–991.

Sun, J., Wei, Z. Z., Gu, X., et al. Intranasal delivery of hypoxia- preconditioned bone marrow-derived mesenchymal stem cells enhanced regenerative effects after intracerebral hemorrhagic stroke in mice. Exp Neurol. 2015;272:78-87.

Wang, K., Fu, Q., Chen, X., Gao, Y., & Dong, K. Preparation and characterization of pH-sensitive hydrogel for drug delivery system. RSC Advance. 2012, 2(20), 7772.

Li, Y., Rodrigues, J., & Tomás, H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 2012, 41(6), 2193–2221.

Vashist, A., Vashist, A., Gupta, Y. K., & Ahmad, S. Recent advances in hydrogel based drug delivery systems for the human body. J. Mater. Chem. B. 2014, 2(2), 147–166.

Strehin, I., Nahas, Z., Arora, K., Nguyen, T., & Elisseeff, J. A versatile pH sensitive chondroitin sulfate–PEG tissue adhesive and hydrogel. Biomaterials. 2010, 31(10), 2788–2797.

Ghuman, H., Massensini, A. R., Donnelly, J., Kim, S.-M., Medberry, C. J., Badylak, S. F., & Modo, M. ECM hydrogel for the treatment of stroke: Characterization of the host cell infiltrate. Biomaterials. 2016, 91, 166– 181.

Kang, I., Chang, M. Y., Wight, T. N., & Frevert, C. W. Proteoglycans as Immunomodulators of the Innate Immune Response to Lung Infection. Journal of Histochemistry & Cytochemistry. 2018, 66(4), 241-259.

Yang, J., Shen, M., Wen, H., Luo, Y., Huang, R., Rong, L., & Xie, J. Recent advance in delivery system and tissue engineering applications of chondroitin sulfate. Carbohydrate Polymer. 2019, 115650.

L. Karumbaiah, T. Saxena, M. Betancur, R. V. Chondroitin sulfate glycosaminoglycans for CNS homeostasis-implications for material design. Med. Chem. 2014, 21, 4257.

Purushothaman, A., Sugahara, K., & Faissner, A. Chondroitin Sulfate ―Wobble Motifs‖ Modulate Maintenance and Differentiation of Neural Stem Cells and Their Progeny. Journal of Biological Chemistry, 287(5), 2935–2942Volpi, N. (2019). Chondroitin sulfate safety and quality. Molecules. 2011, 24(8), 1447.

Townley, R. A., & Bülow, H. E. Deciphering functional glycosaminoglycan motifs in development. Current Opinion in Structural Biology. 2018 50, 144–154.

Bang, S., Jung, U. W., & Noh, I. Synthesis and Biocompatibility Characterizations of in Situ Chondroitin Sulfate-Gelatin Hydrogel for Tissue Engineering. Tissue Engineering and Regenerative Medicine. 2018, 15(1), 25-35.

Becker, A. M., Meyers, E., Sloan, A., Rennaker, R., Kilgard, M., & Goldberg, M. P. An automated task for the training and assessment of distal forelimb function in a mouse model of ischemic stroke. Journal of Neuroscience Methods. 2016, 258, 16–23.

D., Lapi A. Colantuoni, J. remodelling of cerebral microcirculation after ischemia-reperfusion. 2015, 52, 22.

Sébastien, L. J., Makoto, H., Zsolt, K., et al. Functional overlap between chondroitin and heparan sulfate proteoglycans during VEGF-induced sprouting angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012;32(5):1255-1263.

43. A. Salehi, J. H. Zhang, A. Obenaus. Response of the cerebral vasculature following traumatic brain injury. 2017, 37, 2320.

Komaki S, Sugita Y, Furuta T, Yamada K, Moritsubo M, Abe H, et al. (2019). Expression of GLUT1 in Pseudopalisaded and Perivascular Tumor Cells Is an Independent Prognostic Factor for Patients With Glioblastomas. Journal of Neuropathology & Experimental Neurology. 78. 389-397.

Campbell BC, Christensen S, Tress BM, Churilov L, Desmond PM, Parsons MW, et al. Failure of collateral blood flow is associated with infarct growth in ischemic stroke. J Cereb Blood Flow Metab. 2013;33:1168–1172.

Cuccione, E., Padovano, G., Versace, A., Ferrarese, C., & Beretta, S. Cerebral collateral circulation in experimental ischemic translational 2016. stroke. Experimental & stroke medicine, 8, 2




DOI: https://doi.org/10.26618/aimj.v3i2.4161

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Sisca Sisca, Nurul Azizah, M. Salas Al Aldi

Creative Commons License
Al-Iqra Medical Journal: Jurnal Ilmiah Kedokteran under by Creative Commons Attribution-NoDerivatives 4.0 International License.