ANALISIS POTENSI TERAPI SELULER MENGGUNAKAN ADIPOSE-DERIVED STEM CELLS DAN PLATELET-RICH PLASMA DALAM PENANGANAN PENYAKIT ALZHEIMER

Rejoel Mangasa Siagian, Grady Krisandi

Abstract


Alzheimer sebagai penyakit penyebab utama dari kasus demensia pada lansia terus meningkat seiring dengan pertumbuhan jumlah penduduk usia lanjut. Diagnosis, pencegahan, dan secara khusus penanganan penyakit Alzheimer perlu diteliti lebih lanjut. Penelitian terapi seluler dengan menggunakan sel punca adipose-derived stem cell (ADSC) serta penggunaan bioteknologi platelet-rich plasma (PRP) menunjukkan sebuah penanganan dengan metode baru dan potensial oleh karennya dibutuhkan kajian analisis terkait potensi sebagai kandidat terapi Alzheimer. Kajian dilakukan sesuai dengan panduan PRISMA dari sejumlah database yang diakses daring. Dari hasil analisis studi literatur, ADSC dan PRP penurunan konsentrasi peptida amiloid beta (Aβ), pertumbuhan neuron dan sinaptogenesis, aktivasi mikroglia dengan fenotipe antiinflamasi, peningkatan produksi sitokin antiinflamasi, peningkatan stabilitas sinaps dan dendrit, peningkatan viabilitas neuron, peningkatan neurogenesis, dan penurunan neurodegenerasi.dan peningkatan kognitif. Potensi ADSC dan PRP cukup menjanjikan walaupun PRP masih belum banyak yang meneliti potensinya pada penyakit Alzheimer. Studi lebih lanjut mengenai kedua faktor bioaktif tersebut diperlukan untuk meningkatkan potensi serta kemungkinan kombinasi terapi ADSC dan PRP untuk penyakit Alzheimer.


Keywords


alzheimer, adipose-derived stem cells, stromal vascular fraction, platelet-rich plasma

Full Text:

PDF

References


Bondi MW, Edmonds EC, Salmon DP. Alzheimer's disease: past, present, and future. J Int Neuropsychol Soc. 2017 Oct;23(9-10):818- 831.

Yiannopoulou KG, Papageorgiou SG. Current and future treatments in alzheimer disease: an update. J Cent Nerv Syst Dis. 2020 Feb 29;12:1179573520907397.

Alzheimer's Association. 2018 alzheimer's disease facts and figures. Alzheimer's & Dementia. 2018 Mar;14(3): 367-429.

Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013 Jan;9(1):63-75.e2.

Prince, Martin, Comas-Herrera, Adelina, Knapp, Martin, Guerchet, Maëlenn and Karagiannidou, Maria. World Alzheimer report 2016: improving healthcare for people living with dementia: coverage,quality and costs now and in the future. London(UK): Alzheimer’s Disease International; 2016.

Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol. 2011 Mar;7(3):137-52.

Weller J, Budson A. Current understanding of Alzheimer's disease diagnosis and treatment. F1000Res. 2018 Jul 31;7:F1000 Faculty Rev- 1161.

Del-Aguila JL, Koboldt DC, Black K, Chasse R, Norton J, Wilson RK, Cruchaga C. Alzheimer's disease: rare variants with large effect sizes. Curr Opin Genet Dev. 2015 Aug;33:49-55.

Nisa H, Sinuraya RK. Biomarker miRNA-146a sebagai deteksi dini yang efektif untuk Alzheimer. Farmaka. 2017; 15(2):159-177.

Budson AE, Solomon PR. New criteria for Alzheimer disease and mild cognitive impairment: implications for the practicing clinician. Neurologist. 2012 Nov;18(6):356-63.

Yiannopoulou KG, Papageorgiou SG. Current and future treatments in alzheimer disease: an update. J Cent Nerv Syst Dis. 2020 Feb 29;12:1179573520907397.

Atri A. Current and Future Treatments in Alzheimer's Disease. Semin Neurol. 2019 Apr;39(2):227-240.

Kishita N, Backhouse T, Mioshi E. Nonpharmacological Interventions to Improve Depression, Anxiety, and Quality of Life (QoL) in People With Dementia: An Overview of Systematic Reviews. J Geriatr Psychiatry Neurol. 2020 Jan;33(1):28-41.

Mossello E, Ballini E. Management of patients with Alzheimer's disease: pharmacological treatment and quality of life. Ther Adv Chronic Dis. 2012 Jul;3(4):183-93.

FanL,MaoC,HuX,ZhangS,YangZ,HuZ, Sun H, Fan Y, Dong Y, Yang J, Shi C, Xu Y. New Insights Into the Pathogenesis of Alzheimer's Disease. Front Neurol. 2020 Jan 10;10:1312.

Yiannopoulou KG, Papageorgiou SG. Current and future treatments for Alzheimer's disease. Ther Adv Neurol Disord. 2013 Jan;6(1):19-33.

Yiannopoulou KG, Papageorgiou SG. Current and Future Treatments in Alzheimer Disease: An Update. J Cent Nerv Syst Dis. 2020 Feb 29;12:1179573520907397.

Kaushal V, Dye R, Pakavathkumar P, Foveau B, Flores J, Hyman B, Ghetti B, Koller BH, LeBlanc AC. Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated Caspase-6 activation. Cell Death Differ. 2015 Oct;22(10):1676-86.

Dubey NK, Mishra VK, Dubey R, Deng Y, Tsai F, Deng W. Revisiting the advances in isolation, characterization, and secretome of adipose- derived stromal/stem cells. Int J Mol Sci. 2018;19(8):2200.

Hong P, Yang H, Wu Y, Li K, Tang Z. The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review. Stem Cell Res Ther. 2019;10(1):242.

Bacakova L, Zarubova J, Travnickova M, Musilkova J, Pajorova J, Slepicka P, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose- derived stem cells - a review. Biotechnol Adv. 2018;36(4):1111-26.

Cavallo C, Roffi A, Grigolo B, Mariani E, Pratelli L, Merli G, et al. Platelet-rich plasma: the choice of activation method affects the release of bioactive molecules. Biomed Res Int. 2016;2016:1-7.

Shen YX, Fan ZH, Zhao J, Zhang P. The application of platelet-rich plasma may be a novel treatment for central nervous system diseases. Med Hypotheses. 2009;73(6):1038- 40.

Farrukh A, Zhao S, del Campo A. Microenvironments designed to support growth and function of neuronal cells. Front Mater. 2018;5:1-22.

LeeM,BanJJ,YangS,ImW,KimM.The exosome of adipose-derived stem cells reduces β-amyloid pathology and apoptosis of neuronal cells derived from the transgenic mouse model of Alzheimer's disease. Brain Res. 2018 Jul 15;1691:87-93

Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, Oki K, Takeshita F, Sakai Y, Kuroda M, Ochiya T. Human adipose tissue- derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep. 2013;3:1197.

Ma T, Gong K, Ao Q, Yan Y, Song B, Huang H, Gong Y. (2013). Intracerebral Transplantation of Adipose-Derived Mesenchymal Stem Cells Alternatively Activates Microglia and Ameliorates Neuropathological Deficits in Alzheimer’s Disease Mice. Cell Transplantation. 2013 Jan 1; 113–126.

Kim S, Chang KA, Kim Ja, Park HG, Ra JC, Kim HS, Suh YH. The preventive and therapeutic effects of intravenous human adipose-derived stem cells in Alzheimer's disease mice. PLoS One. 2012;7(9):e45757.

Ha S, Ahn S, Kim S, Joo Y,Chong YH, Suh YH, Chang KA. In vivo imaging of human adipose-derived stem cells in Alzheimer's disease animal model. J Biomed Opt. 2014 May;19(5):051206.

Duma C, Kopyov O, Kopyov A et al. Human intracerebroventricular (ICV) injection of autologous, non-engineered, adipose-derived stromal vascular fraction (ADSVF) for neurodegenerative disorders: results of a 3-year phase 1 study of 113 injections in 31 patients. Mol Biol Rep. 2019 Jul 20; 46: 5257– 5272

Anitua E, Pascual C, Pérez-Gonzalez R, Antequera D, Padilla S, Orive G, Carro E. Intranasal delivery of plasma and platelet growth factors using PRGF-Endoret system enhances neurogenesis in a mouse model of Alzheimer's disease. PLoS One. 2013 Sep 19;8(9):e731.




DOI: https://doi.org/10.26618/aimj.v3i2.4160

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Rejoel Mangasa Siagian, Grady Krisandi

Creative Commons License
Al-Iqra Medical Journal: Jurnal Ilmiah Kedokteran under by Creative Commons Attribution-NoDerivatives 4.0 International License.