KLASIFIKASI SARAN DAN KRITIK PADA SIMAK UNISMUHDENGAN MENGGUNAKAN ALGORTIMA RECCURENCTNEURAL NETWORK (RNN)

Authors

  • Ahmad faisal
  • Titin Wahyuni
  • Fahrim Irhamna Rachman

DOI:

https://doi.org/10.26618/8ttaxq04

Abstract

SIMAK Unismuh Makassar is an important platform used by students to submit suggestions and
criticisms related to various academic aspects. In this study, researchers implemented the
Recurrent Neural Network (RNN) algorithm to classify suggestions and criticisms received
through SIMAK Unismuh. The purpose of this study was to determine the implementation of the
RNN Algorithm in classifying suggestions and criticisms on the SIMAK Unismuh page and how
successful the RNN Algorithm was in classifying suggestions and criticisms on the SIMAK
Unismuh page. RNN was chosen because of its ability to process sequential text data, such as
input in the form of sentences, which allows the model to capture the context of the input more
effectively. The dataset used in this study consists of a number of suggestion and criticism data
that have been categorized manually. The RNN model that was built was then trained and tested
using the data to assess its accuracy and performance. The results showed that the model
achieved the highest accuracy of 91% and the lowest accuracy of 90%. Although there were
variations in model performance, these results indicate that RNN has good potential in classifying
suggestion and criticism texts. The RNN model can help institutions understand and respond to
user input more effectively, although it still requires further optimization to improve the consistency
and accuracy of the results. The conclusion of this study shows that the RNN model is able to
classify suggestions and criticisms with an adequate level of accuracy. The application of this
model is expected to help the Unismuh administration in managing student input more efficiently,
as well as providing more appropriate and faster responses to academic needs.

Downloads

Download data is not yet available.

References

Yusny, R., & Yasa, G. I. (2019). MENGEMBANGKAN (PEMBELAJARAN) BLENDED LEARNING DENGAN SISTEM LINGKUNGAN PEMBELAJARAN VIRTUAL (VLE) DI PTKIN. Jurnal Ilmiah Islam Futura, 19(1). https://doi.org/10.22373/jiif.v19i1.3707

Rozi, I. F., Wijayaningrum, V. N., & Khozin, N. (2020). KLASIFIKASI TEKS

LAPORAN MASYARAKAT PADA SITUS LAPOR! MENGGUNAKAN RECURRENT NEURAL NETWORK. SISTEMASI, 9(3). https://doi.org/10.32520/stmsi.v9i3.977

Firmansyah, M. R., Ilyas, R., & Kasyidi, F. (2020). Klasifikasi Kalimat Ilmiah Menggunakan Recurrent Neural Network. Prosiding The 11th Industrial Research Workshop and National Seminar, 11(1).

Ardiansyah, D., Saepudin, A., Aryanti, R., & Fitriani, E. (2020). Perancangan Sistem Informasi Akademik Madrasah Aliyah Negeri (Man) 4 Karawang Berbasis Web. Jurnal Teknologi Dan Open Source, 3(2), 187–201. https://doi.org/10.36378/jtos.v3i2.783

Agustiandra, V., & Sabandi, A. (2019). Persepsi Guru Terhadap Penerapan Sistem Informasi Manajemen Di Sekolah Menengah Kejuruan (Smk) Negeri 3 Padang. Jurnal Bahana Manajemen Pendidikan, 8(1), 1. https://doi.org/10.24036/bmp.v8i1.103704

Map, J., Ilyasi, A., Susanto, H., & Astuti, S. J. W. (2020). PELAKSANAAN SISTEM ADMINISTRASI AKADEMIK DI UNIVERSITAS ISLAM JEMBER. MAP (Jurnal Manajemen Dan Administrasi Publik), 3(2). https://doi.org/10.37504/map.v3i2.245

Ardiansyah, D., Saepudin, A., Aryanti, R., & Fitriani, E. (2020). Perancangan Sistem Informasi Akademik Madrasah Aliyah Negeri (Man) 4 Karawang Berbasis Web. Jurnal Teknologi Dan Open Source, 3(2), 187–201. https://doi.org/10.36378/jtos.v3i2.783

Adanson, Y. N., & Fitriana, G. F. (2022). Rancang Bangun Aplikasi Midesk Berbasis Website Menggunakan Metode User Centered Design. Jurnal Sistem Komputer Dan Informatika (JSON), 4(1). https://doi.org/10.30865/json.v4i1.4376

Nurashila, S. S., Hamami, F., & Kusumasari, T. F. (2023). Perbandingan Kinerja Algoritma Recurrent Neural Network (Rnn) Dan Long Short-Term Memory (Lstm): Studi Kasus Prediksi Kemacetan Lalu Lintas Jaringan Pt Xyz. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 8(3), 864–877. https://doi.org/10.29100/jipi.v8i3.3961

Bai, Y., Xie, J., Liu, C., Tao, Y., Zeng, B., & Li, C. (2021). Regression modeling for enterprise electricity consumption: A comparison of recurrent neural network and its variants. International Journal of Electrical Power and Energy Systems, 126. https://doi.org/10.1016/j.ijepes.2020.106612

Bai, Y., Xie, J., Liu, C., Tao, Y., Zeng, B., & Li, C. (2021). Regression modeling for enterprise electricity consumption: A comparison of recurrent neural network and its variants. International Journal of Electrical Power and Energy Systems, 126. https://doi.org/10.1016/j.ijepes.2020.106612

Mestika, J. C., Selan, M. O., & Qadafi, M. I. (2022). Menjelajahi Teknik-Teknik Supervised Learning untuk Pemodelan Prediktif Menggunakan Python. BIIKMA : Buletin Ilmiah Ilmu Komputer Dan Multimedia, 99(99).

Abijono, H., Santoso, P., & Anggreini, N. L. (2021). Algoritma Supervised Learning Dan Unsupervised Learning Dalam Pengolahan Data. Jurnal Teknologi Terapan: G-Tech, 4(2), 315–318. https://doi.org/10.33379/gtech.v4i2.635

Fajar Ramadhan, D., Noertjahjono, S., & Dedy Irawan, J. (2020). PENERAPAN CHATBOT AUTO REPLY PADA WHATSAPP SEBAGAI PUSAT INFORMASI PRAKTIKUM MENGGUNAKAN ARTIFICIAL INTELLIGENCE MARKUP LANGUAGE. JATI (Jurnal Mahasiswa Teknik Informatika), 4(1). https://doi.org/10.36040/jati.v4i1.2375

Husamuddin, H., Prasetyo, D. B., & Rustamadji, H. C. (2020). Otomatisasi Layanan Frequently Ask Questions Berbasis Natural Langugae Processing Pada Telegram

Bot. Telematika, 17(2), 145. https://doi.org/10.31315/telematika.v1i1.3383

Downloads

Published

2025-12-03

How to Cite

KLASIFIKASI SARAN DAN KRITIK PADA SIMAK UNISMUHDENGAN MENGGUNAKAN ALGORTIMA RECCURENCTNEURAL NETWORK (RNN). (2025). Ainet : Jurnal Informatika, 7(1), 8-17. https://doi.org/10.26618/8ttaxq04