Penggunaan CNN Dalam Analisis Sentimen Pada ReviewTempat Wisata Makassar
DOI:
https://doi.org/10.26618/73mrdb71Keywords:
Kata Kunci, Mesin Learning, Analisis, Sentimen, Makassar, Google MapsAbstract
This research aims to analyze sentiment in reviews of tourist attractions in Makassar using the
Convolutional Neural Network (CNN) method. Makassar, as one of Indonesia's main tourist
destinations, receives numerous reviews from diverse visitors. Each review is textually
processed through data cleaning, tokenization, stop word removal, and stemming stages. The
CNN model built consists of several convolutional and pooling layers that function to extract
important features from the review text. The results of this research provide valuable insights
into visitors' perceptions of tourist attractions in Makassar. This sentiment analysis can be used
by tourist attraction managers and related parties to improve the quality of services and visitor
experiences.
Downloads
References
Referensi
G. A. Buntoro, “Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter,” vol. 2,
no. 1, pp. 32–41, 2017.
I. Asriandy, “Strategi Pengembangan Obyek Wisata Air TERJUN BISSAPU DI KABUPATEN BANTAENG,” Univ. Hasanudin, p. 82, 2016, [Online]. Available: https://core.ac.uk/download/pdf/77625485.pdf
B. A. I. G. N. Agung, “Implementasi Deep Learning untuk Image Clasification menggunakan Arsitektur Convolutional Neural Network (CNN) pada Citra Sampah Hotel (Studi Kasus: Hotel …,” 2023, [Online]. Available: http://eprints.unram.ac.id/id/eprint/41624%0Ahttp://eprints.unram.ac.id/41624/2/JURNAL TUGAS AKHIR - F1D019037 - I.G.N.A. BAYU ADHIPRAMANA - TEKNIK INFORMATIKA.pdf
A. K. QORITA, “Analisis Sentimen Berbasis Aspek Pada Ulasan Tempat Wisata Diy,” 2022, [Online]. Available: https://dspace.uii.ac.id/handle/123456789/39202%0Ahttps://dspace.uii.ac.id/bitstream/handle/123456789/39202/18523214.pdf?sequence=1
A. Peryanto, A. Yudhana, and R. Umar, “Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning Berbasis Metode Convolutional Neural Network,” Format J. Ilm. Tek. Inform., vol. 8, no. 2, p. 138, 2020, doi: 10.22441/format.2019.v8.i2.007.
Muhammad Haris Diponegoro, Sri Suning Kusumawardani, and Indriana Hidayah, “Tinjauan Pustaka Sistematis: Implementasi Metode Deep Learning pada Prediksi Kinerja Murid,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 2, pp. 131–138, 2021, doi: 10.22146/jnteti.v10i2.1417.
B. Gunawan, H. S. Pratiwi, and E. E. Pratama, “Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,” J. Edukasi dan Penelit. Inform., vol. 4, no. 2, p. 113, 2018, doi: 10.26418/jp.v4i2.27526.
W. A. Prabowo and C. Wiguna, “Sistem Informasi UMKM Bengkel Berbasis Web Menggunakan Metode SCRUM,” J. Media Inform. Budidarma, vol. 5, no. 1, p. 149, 2021, doi: 10.30865/mib.v5i1.2604.
J. C. Mestika, M. O. Selan, and M. I. Qadafi, “Menjelajahi Teknik-Teknik Supervised Learning untuk Pemodelan Prediktif Menggunakan Python,” vol. 99, no. 99, pp. 216–219, 2022.
Z. Muhamad, “Jurnal Teknik Informatika Atmaluhur,” J. Tek. Inform. Atmaluhur, vol. 6, no. 1, p. 40, 2018.
R. Rosaly and A. Prasetyo, “Flowchart Beserta Fungsi dan Simbol-Simbol,” J. Chem. Inf. Model., vol. 2, no. 3, pp. 5–7, 2020.
Y. Riadi Silitonga, Munawar, and I. Noor Hapsari, “Analisis Dan Penerapan Datamining Untuk Mendeteksi Berita Palsu (Fake News) Pada Social Media Dengan Memanfaatkan Modul Scikit Learn,” Undergrad. Theses Inf. Syst., 2019.
I. Pelham, “Erd2,” Secret. Pathw., vol. 5, pp. 135–135, 2023, doi: 10.1093/oso/9780198599425.003.0085.
D. T. Hermanto, A. Setyanto, and E. T. Luthfi, “Algoritma LSTM-CNN untuk Binary Klasifikasi dengan Word2vec pada Media Online,” Creat. Inf. Technol. J., vol. 8, no. 1, p. 64, 2021, doi: 10.24076/citec.2021v8i1.264.
A. F. Hidayatullah and R. A. N. Nayoan, “Analisis Sentimen Berbasis Fitur pada Ulasan Tempat Wisata Menggunakan Metode Convolutional Neural Network(CNN),” 2019, [Online]. Available: www.cnet.com.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Safutri Kamal, Fahrim Irhamna Rachman, Titin Wahyuni

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.










