Analisis Sentimen Text Dengan Metode CNN Study KasusTempat Wisata Makassar
DOI:
https://doi.org/10.26618/n1gcbb74Keywords:
Analisis sentimen, Convolutional Neural Network, Tempat wisata Makassar, Ulasan Google MapsAbstract
This research aims to evaluate and determine the extent to which the CNN (Convolutional
Neural Network) method can produce accurate sentiment predictions for reviews of Makassar
tourist attractions. This sentiment analysis method uses review data collected from the Google
Maps platform. In this research, a preprocessing stage was carried out to clean the data, such
as cleaning, transform cases, tokenizing, stopwords and stemming. Next, the dataset was
divided into training data and test data with scenarios 90 : 10, 80 : 20 and 70 : 30 to train and
test the model with three review categories, namely positive, negative and neutral. The results
of sentiment analysis show that the CNN method has good abilities in predicting positive,
negative and neutral sentiment in reviews of Makassar tourist attractions. A high level of
accuracy at the training stage shows that the model is able to learn well from the dataset
provided. Although the accuracy rate at the validation stage was slightly lower, it still reached an
adequate figure, indicating that the model has quite good generalization ability in classifying
sentiment in these reviews. The highest accuracy results were obtained with Training Accuracy
which increased to obtain a training accuracy value of 95%, and Validation Accuracy obtained a
value of 73%.
Downloads
References
G. A. Buntoro, “Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter,” vol. 2, no. 1, pp. 32–41, 2017.
I. Asriandy, “Strategi Pengembangan Obyek Wisata Air TERJUN BISSAPU DI KABUPATEN BANTAENG,” Univ. Hasanudin, p. 82, 2016, [Online]. Available: https://core.ac.uk/download/pdf/77625485.pdf
B. A. I. G. N. Agung, “Implementasi Deep Learning untuk Image Clasification menggunakan Arsitektur Convolutional Neural Network (CNN) pada Citra Sampah Hotel (Studi Kasus: Hotel …,” 2023, [Online]. Available: http://eprints.unram.ac.id/id/eprint/41624%0Ahttp://eprints.unram.ac.id/41624/2/JURNAL TUGAS AKHIR - F1D019037 - I.G.N.A. BAYU ADHIPRAMANA - TEKNIK INFORMATIKA.pdf
A. K. QORITA, “Analisis Sentimen Berbasis Aspek Pada Ulasan Tempat Wisata Diy,” 2022, [Online]. Available: https://dspace.uii.ac.id/handle/123456789/39202%0Ahttps://dspace.uii.ac.id/bitstream/handle/123456789/39202/18523214.pdf?sequence=1
A. Peryanto, A. Yudhana, and R. Umar, “Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning Berbasis Metode Convolutional Neural Network,” Format J. Ilm. Tek. Inform., vol. 8, no. 2, p. 138, 2020, doi: 10.22441/format.2019.v8.i2.007.
Muhammad Haris Diponegoro, Sri Suning Kusumawardani, and Indriana Hidayah, “Tinjauan Pustaka Sistematis: Implementasi Metode Deep Learning pada Prediksi Kinerja Murid,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 2, pp. 131–138, 2021, doi: 10.22146/jnteti.v10i2.1417.
B. Gunawan, H. S. Pratiwi, and E. E. Pratama, “Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,” J. Edukasi dan Penelit. Inform., vol. 4, no. 2, p. 113, 2018, doi: 10.26418/jp.v4i2.27526.
W. A. Prabowo and C. Wiguna, “Sistem Informasi UMKM Bengkel Berbasis Web Menggunakan Metode SCRUM,” J. Media Inform. Budidarma, vol. 5, no. 1, p. 149, 2021, doi: 10.30865/mib.v5i1.2604.
J. C. Mestika, M. O. Selan, and M. I. Qadafi, “Menjelajahi Teknik-Teknik Supervised Learning untuk Pemodelan Prediktif Menggunakan Python,” vol. 99, no. 99, pp. 216–219, 2022.
Z. Muhamad, “Jurnal Teknik Informatika Atmaluhur,” J. Tek. Inform. Atmaluhur, vol. 6, no. 1, p. 40, 2018.
R. Rosaly and A. Prasetyo, “Flowchart Beserta Fungsi dan Simbol-Simbol,” J. Chem. Inf. Model., vol. 2, no. 3, pp. 5–7, 2020.
Y. Riadi Silitonga, Munawar, and I. Noor Hapsari, “Analisis Dan Penerapan Datamining Untuk Mendeteksi Berita Palsu (Fake News) Pada Social Media Dengan Memanfaatkan Modul Scikit Learn,” Undergrad. Theses Inf. Syst., 2019.
I. Pelham, “Erd2,” Secret. Pathw., vol. 5, pp. 135–135, 2023, doi: 10.1093/oso/9780198599425.003.0085.
D. T. Hermanto, A. Setyanto, and E. T. Luthfi, “Algoritma LSTM-CNN untuk Binary Klasifikasi dengan Word2vec pada Media Online,” Creat. Inf. Technol. J., vol. 8, no. 1, p. 64, 2021, doi: 10.24076/citec.2021v8i1.264.
A. F. Hidayatullah and R. A. N. Nayoan, “Analisis Sentimen Berbasis Fitur pada Ulasan Tempat Wisata Menggunakan Metode Convolutional Neural Network(CNN),” 2019, [Online]. Available: www.cnet.com.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Safutri Kamal, Fahrim Irhamna Rachman, Titin Wahyuni

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.










