PENGARUH TRANSPLANTASI SEL PUNCA MESENKIMAL TERHADAP PERJALANAN PENYAKIT ALZHEIMER BERBASIS PENELITIAN PADA TIKUS: SEBUAH TINJAUAN SISTEMATIS
Abstract
Penyakit Alzheimer atau Alzheimer’ s disease (AD) merupakan salah satu penyakit neurodegeneratif yang paling umum didiagnosis pada populasi dunia, terkhusus pada wanita. Beberapa manifestasi patologi yang dapat diobservasi adalah deposisi beta-amyloid (Aβ), hiperfosforilasi protein tau, dan inflamasi yang ketiganya berperan sebagai core-pathology dari AD. Permasalahan terberat dari terapi AD saat ini adalah ketidakmampuan berbagai agen farmakologis saat ini untuk menghentikan progresivitas AD. Oleh karena itu, salah satu ikon terapi medis modern yaitu terapi sel punca atau stem cell (SC), khususnya menggunakan sel punca mesenkimal atau mesenchymal SC (MSCs) pada beberapa tahun terakhir telah dijadikan sebagai salah satu fokus studi terapi kuratif penyakit degeneratif yang selama ini hampir selalu tidak mungkin tercapai. Manuskrip tinjauan sistematis ini bertujuan untuk menjabarkan pengaruh transplantasi MSCs secara xenogenik maupun alogenik pada berbagai spesies tikus yang telah diinduksi dengan Aβ untuk mengalami kondisi AD buatan yang dilaporkan oleh berbagai penelitian orisinal pada beberapa tahun terakhir. Sebanyak 32 penelitian dijadikan sebagai referensi utama yang keseluruhannya menunjukkan perbaikan perihal manifestasi patologis seperti reduksi dari deposisi Aβ, penurunan kondisi inflamasi melalui berbagai biomarka, peningkatan aktivitas neurogenesis pada beberapa regio otak seperti hipokampus, dan efek neuroproteksi yang cukup signifikan. Pengaruh tersebut juga dapat diobservasi pada kondisi tingkah laku (behavior) tikus percobaan seperti perbaikan fungsi kognitif dan memori yang diukur berdasarkan metode observasi tertentu. Oleh karena itu, MSCs diduga memiliki potensi untuk menjadi sebuah terapi kuratif bagi AD yang selama ini tidak mampu menghentikan progresivitasnya.
Keywords
Full Text:
PDFReferences
World Health Organization. Global report on diabetes. World Health Organization; 2016.
Fowler MJ. Microvascular and macrovascular complications of diabetes. Clinical diabetes. 2008 Apr 1;26(2):77-82.
Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum?. Indian journal of endocrinology and metabolism. 2016 Jul;20(4):546.
Nentwich MM, Ulbig MW. Diabetic retinopathy-ocular complications of diabetes mellitus. World journal of diabetes. 2015 Apr 15;6(3):489.
Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64.
Leasher JL, Bourne RR, Flaxman SR, Jonas JB, Keeffe J, Naidoo K, Pesudovs K, Price H, White RA, Wong TY, Resnikoff S. Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes care. 2016 Sep 1;39(9):1643-9.
Das A, Stroud S, Mehta A, Rangasamy S. New treatments for diabetic retinopathy. Diabetes, Obesity and Metabolism. 2015 Mar;17(3):219-30.
Ong NH, Purcell TL, Roch-Levecq AC, Wang D, Isidro MA, Bottos KM, Heichel CW, Schanzlin DJ. Epithelial healing and visual outcomes of patients using omega-3 oral nutritional supplements before and after photorefractive keratectomy: a pilot study. Cornea. 2013 Jun 1;32(6):761-5.
Diabetic Retinopathy Clinical Research Network. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. New England Journal of Medicine. 2015 Mar 26;372(13):1193-203.
Diana FM. OMEGA 3. 2012;6(2):113–7.
Chen C, Yu X, Shao S. Effects of Omega-3 Fatty Acid Supplementation on Glucose Control and Lipid Levels in Type 2 Diabetes : A Meta- Analysis. 2015;1–14.
Chen J, Higuchi A, Hong S, Pravda EA, Majchrzak S. Reduces pathological retinal angiogenesis. 2015;13(7):868–73.
Querques G, Forte R, Souied EH. Retina and Omega-3. 2011;2011.
Shearer GC, Savinova O V, Harris WS. Fish oil - how does it reduce plasma triglycerides? 2013;1821(5):843–51.
Afonso MS, Oliveira V, Morari J, Santos GA, Koike MK, Lottenberg AM, et al. Flaxseed Oil Rich in Omega-3 Protects Aorta Against Inflammation and Endoplasmic Reticulum Stress Partially Mediated by GPR120 Receptor in Obese, Diabetic and Dyslipidemic Mice Models A. J Nutr Biochem [Internet]. 2017.
Dátilo MN, Ramos M, Ana S, Formigari GP, Rodrigues PB, Moura LP De, et al. Omega-3 from Flaxseed Oil Protects Obese Mice Against Diabetic Retinopathy Through GPR120 Receptor. 2018;(June):1–13.
Lemahieu C, Bruneel C, Ryckebosch E, Muylaert K, Buyse J, Foubert I. Impact of different omega-3 polyunsaturated fatty acid (n-3 PUFA) sources (flaxseed, Isochrysis galbana, fish oil and DHA Gold) on n-3 LC-PUFA enrichment (efficiency) in the egg yolk. Journal of Functional Foods. 2015 Dec 1;19:821-7
Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiological reviews. 2013;93(1):137–88.
Safi SZ, Qvist R, Kumar S, Ismail ISB. Molecular mechanisms of Diabetic Retinopathy, general preventive strategies and novel therapeutic targets. Exp Clin Endocrinol Diabetes. 2013;121(3):109
Diabetes Mellitus: A Fundamental and Clinical Text.Philadelphia, Pa, USA: Lippincott Williams & Wilkins; 2000.
Zong H, Ward M, Stitt AW. AGEs, RAGE, and diabetic retinopathy. Current Diabetes Reports. 2011;11(4):244–252.
Chan P, Kanwar M, Kowluru RA. Resistance of retinal inflammatory mediators to suppress after reinstitution of good glycemic control: novel mechanism for metabolic memory. Journal of Diabetes and its Complications. 2010;24(1):55-63.
Salem Jr N, Eggersdorfer M. Is the world supply of omega-3 fatty acids adequate for optimal human nutrition?. Current Opinion in Clinical Nutrition & Metabolic Care. 2015 Mar 1;18(2):147-54.).
Calder PC. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2015 Apr 1;1851(4):469-84.
Chew EY. Dietary intake of Omega-3 fatty acids from fish and risk of diabetic retinopathy. Jama. 2017 Jun 6;317(21):2226-7.
Iwase Y, Kamei N, Takeda-Morishita M. Antidiabetic effects of omega-3 polyunsaturated fatty acids: from mechanism to therapeutic possibilities. Pharmacology & Pharmacy. 2015 Mar 6;6(03):190.
Sandoval DA, D'Alessio DA. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiological reviews. 2015 Apr;95(2):513-48.
Liu HD, Wang WB, Xu ZG, Liu CH, He DF, Du LP, Li MY, Yu X, Sun JP. FFA4 receptor (GPR120): A hot target for the development of anti-diabetic therapies. European journal of pharmacology. 2015 Sep 15;763:160-8.
Vaughan RA, Garcia-Smith R, Bisoffi M, Conn CA, Trujillo KA. Conjugated linoleic acid or omega 3 fatty acids increase mitochondrial biosynthesis and metabolism in skeletal muscle cells. Lipids in health and disease. 2012 Dec;11(1):142.
Lepretti M, Martucciello S, Burgos Aceves M, Putti R, Lionetti L. Omega-3 fatty acids and insulin resistance: Focus on the regulation of mitochondria and endoplasmic reticulum stress. Nutrients. 2018;10(3):350.
Wang, L., Chen, K., Liu, K. et al. DHA Inhibited AGEs-Induced Retinal Microglia Activation Via Suppression of the PPARγ/NFκB Pathway and Reduction of Signal Transducers in the AGEs/RAGE Axis Recruitment into Lipid Rafts. Neurochem Res. 2015;40: 713
Tikhonenko M, Lydic TA, Opreanu M, Li Calzi S, Bozack S, McSorley KM, et al. N-3 Polyunsaturated Fatty Acids Prevent Diabetic Retinopathy by Inhibition of Retinal Vascular Damage and Enhanced Endothelial Progenitor Cell Reparative Function. PLoS One. Public Library of Science; 2013;8(1):1–10.
Connor KM, SanGiovanni JP, Lofqvist C, et al. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med. 2007;13(7):868-873.
Bays HE, Tighe AP, Sadovsky R, Davidson MH. Prescription omega-3 fatty acids and their lipid effects: physiologic mechanisms of action and clinical implications. Expert review of cardiovascular therapy. 2008 Mar 1;6(3):391-409.)
Fenwick EK, Xie J, Man RE, Sabanayagam C, Lim L, Rees G, Wong TY, Lamoureux EL. Combined poor diabetes control indicators are associated with higher risks of diabetic retinopathy and macular edema than poor glycemic control alone. PloS one. 2017 Jun 29;12(6):e0180252.
Roth DB, King A, Weiss M, Klein D. Systemic adverse events after bevacizumab. Ophthalmology. 2009;116:1226) (Osaadon P, Fagan XJ, Lifshitz T, Levy J. A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye. 2014 May;28(5):510)
Lafuente M, Ortín L, Argente M, Guindo JL, López-Bernal MD, López-Román FJ, García MJ, Domingo JC, Lajara J. Combined Intravitreal Ranibizumab And Oral Supplementation With Docosahexaenoic Acid And Antioxidants For Diabetic Macular Edema: Two-year Randomized Single-blind Controlled Trial Results. Retina. 2017 Jul 1;37(7):1277-86.
DOI: https://doi.org/10.26618/aimj.v2i1.2748
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Naufal Nandita Firsty, Devi Nadilah, Ilman Arif Aritonang
Al-Iqra Medical Journal: Jurnal Ilmiah Kedokteran under by Creative Commons Attribution-NoDerivatives 4.0 International License.